Triangular Trigonometric Patches for Surface Interpolant Xiang Fang & Stephen Mann University of Waterloo

Cubic Triangular Bézier Patch

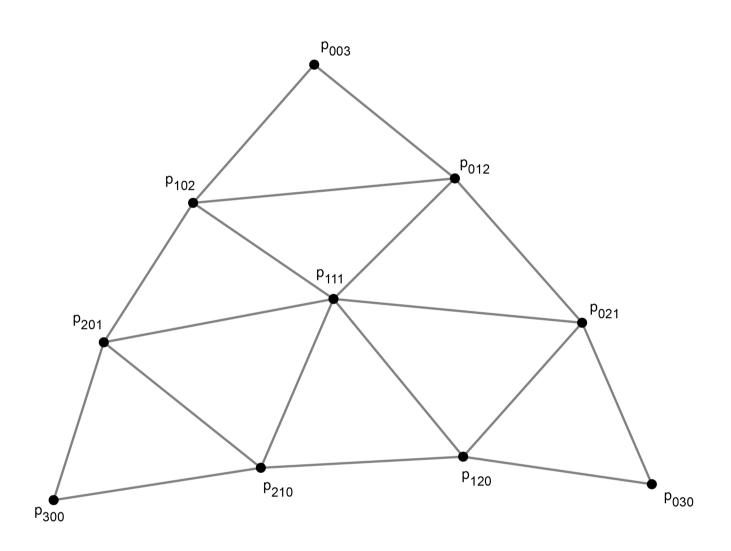
A cubic triangular Bézier patch is defined as

$$b^n(\boldsymbol{u}) = \sum_{|\boldsymbol{i}|=n} p_{\boldsymbol{i}} B^n_{\boldsymbol{i}}(\boldsymbol{u}),$$

where p_i are control points, $B_i^n(\boldsymbol{u})$ are the bivariate Bernstein poly*nomials* (blending functions),

$$B^n_{\boldsymbol{i}}(\boldsymbol{u}) = \binom{n}{\boldsymbol{i}} u^i v^j w^k,$$

with $\boldsymbol{u} = (u, v, w)$ being barycentric coordinates relative to a domain triangle, $\mathbf{i} = (i, j, k)$ is a multi-index with $n = |\mathbf{i}| = i + j + k$, where $\binom{n}{i} = \frac{n!}{i! \, j! \, k!}$.



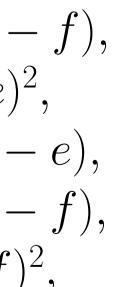
Cubic Triangular Trigonometric Patch

A cubic triangular trigonometric patch uses the same layout of control points. Its blending functions are

$$egin{aligned} f_{300}(oldsymbol{u}) &= (1-d)^2, & f_{102}(oldsymbol{u}) &= 2ae(1-d)^2, \ f_{210}(oldsymbol{u}) &= 2b(1-d)f, & f_{030}(oldsymbol{u}) &= (1-e)^2, \ f_{201}(oldsymbol{u}) &= 2c(1-d)e, & f_{021}(oldsymbol{u}) &= 2cd(1-d)^2, \ f_{120}(oldsymbol{u}) &= 2a(1-e)f, & f_{012}(oldsymbol{u}) &= 2bd(1-d)f, \ f_{111}(oldsymbol{u}) &= 2abc, & f_{003}(oldsymbol{u}) &= (1-f)^2, \end{aligned}$$

where

$$a = \sin \frac{\pi u}{2}, \qquad d = \sin \frac{\pi (v+w)}{2}, \ b = \sin \frac{\pi v}{2}, \qquad e = \sin \frac{\pi (w+u)}{2}, \ c = \sin \frac{\pi w}{2}, \qquad f = \sin \frac{\pi (u+v)}{2}.$$



Cubic triangular trigonometric (CTT) patches have the same C^1 continuity conditions as cubic triangular Bézier patches. The cubic triangular Bézier patches in any C^1 interpolant scheme can be replaced by the CTT patches, with the resulting CTT patches meeting C^1 . For example, Clough-Tocher's construction [1] can use CTT patches instead of cubic Bézier patches.

Divided Trigonometric Patch

The center control point p_{111} < of the cubic triangular trigonometric patch may be divided into four:

$f_{111,0}(oldsymbol{u}) = 2abc(rac{b^2c^2}{e^2} + rac{b^2c^2}{f^2}),$	
$f_{111,1}(oldsymbol{u}) = 2abc(rac{c^2a^2}{f^2} + rac{\check{c}^2a^2}{d^2}),$	
$f_{111,2}(oldsymbol{u}) = 2abc(rac{a^2b^2}{d^2} + rac{a^2b^2}{e^2}),$	
$f_{111}(\boldsymbol{u}) = 2abc - f_{111,0}(\boldsymbol{u}) -$	f_{111}

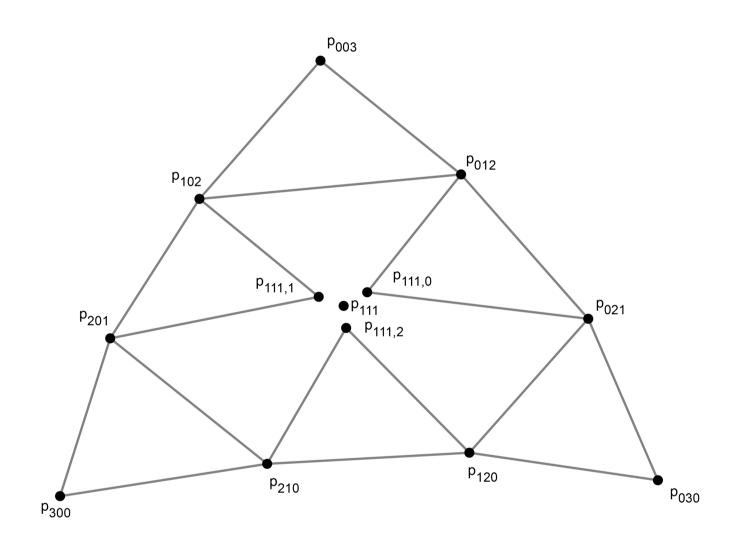


Figure 2: Layout of a divided trigonometric patch. With the divided trigonometric patch, three of the four blended center points are related to one boundary each. Each of these three center points affects only the C^1 continuity condition of one boundary and does not affect the continuity across the other two boundaries.

The fourth center point is a "free" control point, and does not affect the continuity conditions across any boundary.

Bibliography

[1] Clough, Tocher, Finite element stiffness matrices for analysis of plate bending, Write-Patterson I, 1965.

Cheriton School of Computer Science University of Waterloo 200 University Avenue West Waterloo, Ontario, Canada N2L 3G1

$$f_{1,1}(\boldsymbol{u}) - f_{111,2}(\boldsymbol{u}).$$

Examples

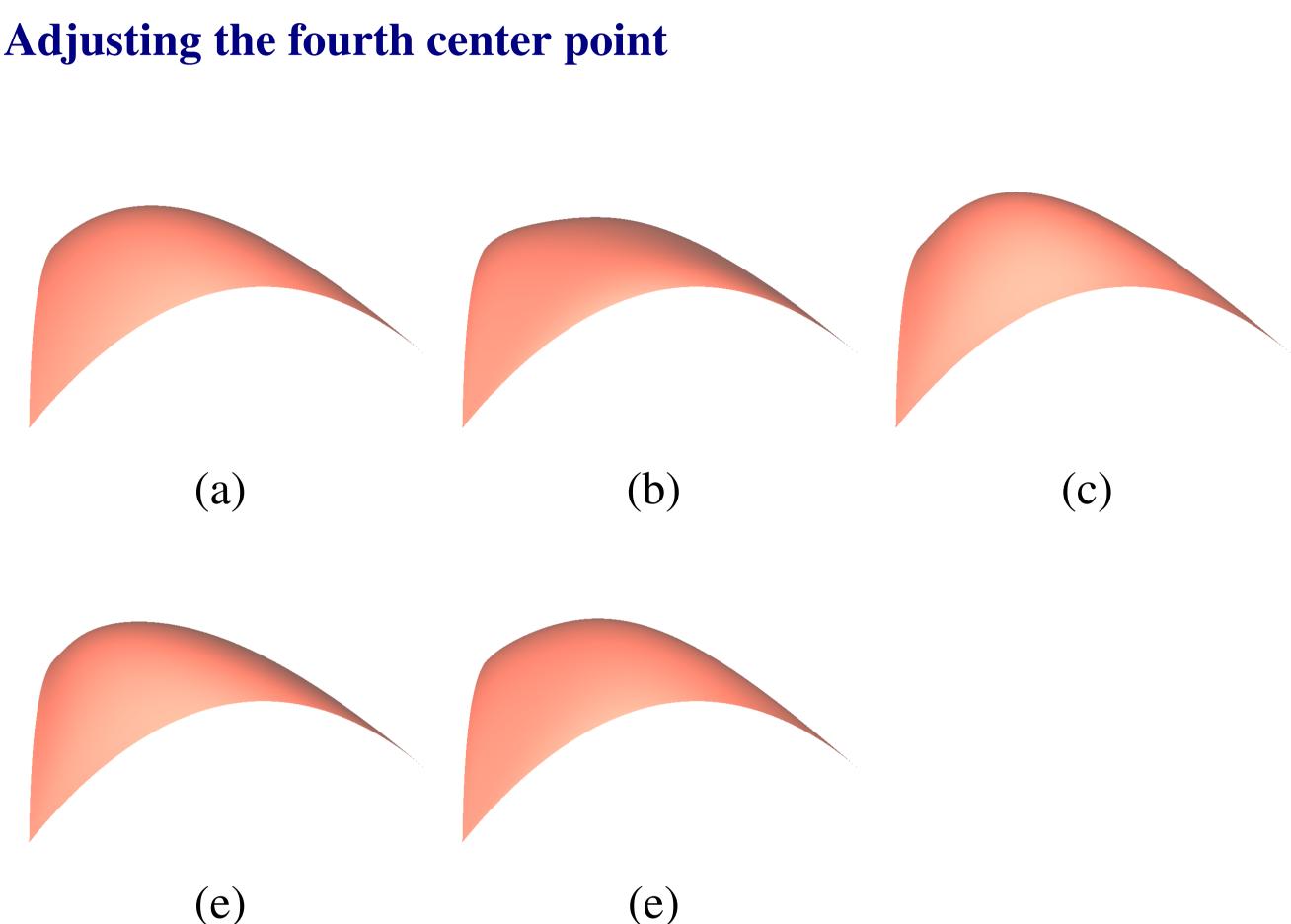
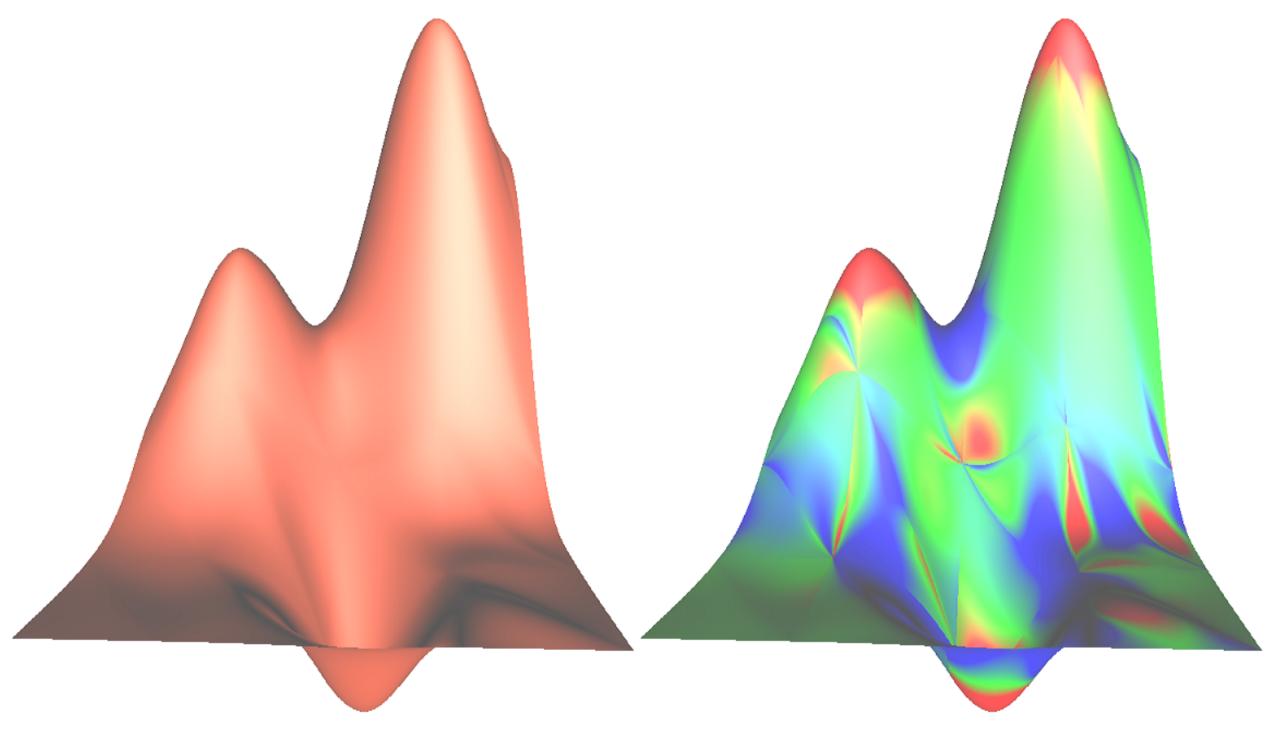


Figure 3: (a) The original patch surface. (b) Shift the center point downward. (c) Shift the center point upward. (d) Shift the center point left. (e) Shift the center point right.

Simple data fitting scheme



(curvature computed numerically).

(e)

Figure 4: Trigonometric surface and its Gaussian curvature plot