Background: Making a Violin

- The table and back of a violin are carved from wood.
- First the shape is roughly carved by eye:
- Next the shape is carefully carved and smoothed to match a series of templates known as cross-archings.

- Question: what curves should be used for cross-archings?
 In recent years, violin makers refer to books or posters that show the cross-archings of great instruments of the past.
- The question remains as to where the originators of these curves obtained them.

Cycloids

- Cycloids and similar curves have a long history of use in science engineering [1].
- A curtate cycloid is obtained by rolling a circle along a line, and tracing the path of a point on the interior of the circle, a construction that was well known in the 16th and 17th centuries.
- The formula for a curtate cycloid is

 \[x = Rt - r \cos(t + \pi/2) \]
 \[y = r \sin(t + \pi/2) + r, \]

 where \(R \) is the radius of the rolling circle and \(r \) is the radius of the circle containing the point whose path we are tracing.

- Empirical testing suggests that the cross-archings used in most golden-period Cremonese instruments (which include those of the Amati and Guarneri families as well as Stradivari) were curtate cycloid curves [2].

Antonio Stradivari Viola, 1696 “Archinto” Back

Catenary

- A catenary curve is obtained by dangling a string from two fixed points.

 \[t, a \cosh(t/a) - a \]

- We are exploring the idea that the lengthwise cross section of some violins was made from catenary curves

Amati Violin, 1628

References

Acknowledgements

Violin carving images reproduced with the kind permission of IPIALL Stradivari.