

Approximate Continuity for Parametric, Triangular Bézier Surfaces Yingbin Liu¹ * Stephen Mann²

Computer Graphics Lab, David R. Cheriton School of Computer Science, University of Waterloo

INTRODUCTION

For two parametric triangular Bézier patches to meet each other with G^1 continuity, their control points have to fulfil certain constrains. These constraints will lead to high degree patches or bad shape properties. The idea of *approximate continuity* is not to configure the control points with the rigid continuity conditions, but set them to generate a surface with approximate continuity. By using approximate G^1 continuity, our data fitting scheme can guarantee a cubic solution, with lower computation price, and result in surfaces with better shape property.

We designed a cubic scheme with approximate G^1 continuity that is similar to the Clough-Tocher's. Three micro triangular Bézier patches will be constructed per each data triangle. For the boundary across different data triangles, approximate G^1 continuity is achieved. For two adjacent micro patches inside the data triangle, we used the same construction as Clough-Tocher's, therefore C^1 continuity is established.

BACKGROUND

- 1. G^1 continuity constraints for parametric Bézier patches
 - Continuous tangential plane along the boundary curve.

- 2. Solution with G^1 continuity for cubic surfaces is not always possible.
 - Existence of G^1 solution can be checked by comparing the intersection ratios of side panels.

¹ybliu@cgl.uwaterloo.ca ²smann@uwaterloo.ca

3. Close to singularity gives poor shape.

As F_0 approaches the singular position, surface shape gets worse, the center of the patch will go to infinity.

• Piper's example of singularity: If control point F_0 moves along y = 1, there is no G^1 solution.

- Approximate continuity: Define a surface to be ε - G^1 if the maximum angle between two surface normals at any point along the common boundary is bounded by ε .
- Advantage of using approximate continuity.
- -Solve the problems without precise continuity solution.

Left: 2. Curvature analysis.

Left:

SOLUTION

– Improve the shape quality of the resulting surface. – Using Clough-Tocher interpolation.

RESULTS

1. Interpolation surfaces using different schemes.

Quartic Shirman-Sequin scheme. Center: Cubic Clough-Tocher scheme with G^1 continuity. Right: Cubic approximate G^1 continuity scheme.

Quartic Shirman-Sequin scheme. Right: Cubic approximate G^1 continuity scheme.