


# Better Pasting Through Quasi-Interpolation Blair Conrad and Stephen Mann, University of Waterloo Special thanks to Tom Lyche, Richard Bartels and Kirk Haller

#### Results

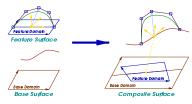
| Past ing       | Mean Position | Max. Position | Mean Normal | # Control | Pasting |
|----------------|---------------|---------------|-------------|-----------|---------|
| Method         | Difference    | Difference    | Difference  | Points    | Cost    |
| Standard       | 5.392e-03     | 1.572e-02     | 7.198e-03   | 81        | 3402    |
| Q0             | 2.581e-03     | 2570e-03      | 2.341e-01   | 81        | 3822    |
| Q1             | 1.413e-04     | 1.864e-03     | 4.842e-05   | 81        | 3030    |
| Std, 1 Refine  | 1.543e-03     | 4.550e-03     | 1.670e-03   | 225       | 9450    |
| Std, 2 Refines | 4.089e-04     | 1.149e-03     | 3.847e-04   | 729       | 30618   |
| Std 3 Defines  | 1049e-04      | 2 891e-04     | 9.641e-05   | 2061      | 109242  |







### Background


### 1. Hierarchical Modeling

- · model smooth surfaces with local detail · examples: car door, face
- · allows multi-resolution editina

|                        | Hierarchical | Inexpensive | Library | Flexible<br>Paradigm | Guaranteed<br>Continuity |
|------------------------|--------------|-------------|---------|----------------------|--------------------------|
| Knot Insertion         | -            | -           | -       | -                    | +                        |
| Hierarchical B-Splines | +            | +           | -       | -                    | +                        |
| Displacement Maps      | +            | -           | +       | +                    | +                        |
| Surface Pasting        | +            | +           | +       | +                    | -                        |

### 2. Surface Pasting

- · represent each feature control point as a displacement vector · map feature domain into base domain
- · find local coordinate frame on base surface
- · map displacement vector to place control point



### 3. Features of Surface Pasting

- . developed by Bartels & Forsey + computationally inexpensive only feature control points are mapped
- \*pasted feature may have non-rectangular domain
   flexible modeling paradigm features may be translated, rotated and scaled
   \*library of features to apply to any base

- + hierarchical pasting (hierarchical modeling)
   only approximates displacement maps no continuity between feature and base

# 4. Pasted Surfaces







model of Sprite the Ferret by Selina Siu



turtle model by Selina Siu



dog model by Clara Tsang

### Problem: expensive to reduce $C^0$ and $C^1$ discontinuity

### 5. Feature Boundaries (Standard Pasting)

- · no way to eliminate feature-base discontinuities · feature control point with O displacement rests on base
- · outer ring has O displacement ⇒ approximate C<sup>0</sup>
  · outer two rings have O displacement ⇒ approximate C<sup>1</sup>
  · knot insertion in feature can reduce discontinuity
  · may need many knots (control points)

- · expensive: each control point must be displaced



approximate C o boundary points



approximate C1 boundary points

### Solution: use Quasi-Interpolation to improve approximation

### 6. Lyche-Schumaker Quasi-Interpolants

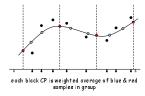
- · degree m approximation Qf to a curve f · each control point of Qf is a weighted sum of linear
- functionals applied to f:

$$CP_{i} = \sum_{j=0}^{m} \alpha_{i,j} \lambda_{i,j} f \qquad (1)$$

- .  $\lambda_{i,j}f=[\tau_{i,0},\tau_{j1},\ldots,\tau_{ij}]f$ .  $\alpha_{i}$ , is a blossom of  $p_{i}(u)=(u-\tau_{i,j})(u-\tau_{i,j})\cdots(u-\tau_{i,j-1})$ . QF-fwher f is a degree m or lower polynomial . otherwise, the approximation error has the best possible order

- 7. Modified Functionals, Coefficients

  Lyche-Schumaker quasi-interpolant uses cheap coefficients and expensive linear functionals for pasting, linear functionals are recalculated frequently, coefficients less so we made new cheaper  $\lambda_{i,j}f=f^{(i)}(\tau_{i,j})$  results in more expensive coefficients based on blossom of  $p_{i,j}(u)=\prod_{k\neq j}\frac{u-\tau_{i,k}}{\tau_{i,j}-\tau_{i,k}}$


- 8. Our  $Q^d$  Operators modify Q to reproduce position and d derivatives at its endpoints linear functionals for control points near ends are derivatives of original curve at endpoints equation (1) suggests m-l samples per control point

  - $\cdot$  we use a new sampling discipline to reduce the number of samples per control point

- 9. Sampling Discipline
  divide control points into groups of about "degree"
  choose intervals to sample from

  - interval endpoints are average of Greville points of adjacent control points
    sample uniformly within intervals

  - · share first & last samples · sharing gives about one base sample per control point



# 10. Quasi-Interpolated Surface Pasting

- sus equasi-interpolation to set control points around feature boundary

   treat each edge as a separate curve approximation problem

   corner points are shared between two edges

   sus Q of operator to set of of outermost rings of control points

   Q operator was constructed so corner control points are set consistently
- · gives improved approximate  $C^d$  continuity around feature boundary