
Parallel-Split Variance Shadow Maps
Andrew Lauritzen

Computer Graphics Lab, David R. Cheriton School of Computer Science, University of Waterloo

ABSTRACT

Standard shadow maps suffer heavily from aliasing for several
reasons, including excessive magnification and poor texture fil-
tering. Common linear filtering algorithms such as mipmapping
and summed-area tables are inapplicable to typical shadow maps
which require a non-linear depth comparison per pixel.

Parallel-split shadow maps (PSSM) provide a simple solution to
the magnification problem by partitioning the view frustum into
different zones, and using a different shadow map for each zone.
PSSMs, however, do nothing to address aliasing due to the lack
of shadow map filtering.

Variance shadow maps (VSM) address the shadow filtering prob-
lem by representing the shadow map in a way that can be linearly
filtered. This allows the use of hardware anti-aliasing and texture
filtering. However VSMs do not address extreme magnification
artifacts due to poorly distributed shadow map data.

We present an algorithm that combines the advantages of
parallel-split shadow maps and variance shadow maps. The re-
sulting algorithm has a good distribution of detail over the cam-
era frustum and also produces properly filtered shadows with ar-
bitrarily soft edges.

PARALLEL-SPLIT SHADOW MAPS

We split the view frustum using planes parallel to the camera pro-
jection plane, assigning each of these regions a unique shadow
map. Any occluder that may cast a shadow into one of these
regions is rendering into the associated shadow map.

In this way, fragments near to the camera will be shadowed us-
ing a shadow map that only covers a small region of the world
near the camera. Thus, by using several lower resolution splits
rather than a single high resolution shadow map, more precision
is appropriately allocated to the regions that are greatly magni-
fied from the perspective of the camera.

VARIANCE SHADOW MAPS

By rendering depth and squared depth into a shadow texture, we
recover the moments M1 and M2 of the depth distribution over
the texture filter region, from which we can compute:

µ = E(x) = M1 (1)
σ2 = E(x2)− E(x)2 = M2 −M 2

1 (2)

Finally we apply Chebyshev’s Inequality to approximate the
probability that a surface at depth t is in shadow:

P (x ≥ t) ≈ p(t) =
σ2

σ2 + (t− µ)2
(3)

Blurring the variance shadow map before shading has the effect
of clamping the minimum filter size, and produces uniform soft
shadow edges.

Shadow Map (1024×1024)

Parallel-Split Shadow Map (4 splits, each 512×512)

Parallel-Split Variance Shadow Map (4 splits, each 512×512)

Variance Shadow Map (1024×1024)

Split Visualization (4 splits)

PARALLEL-SPLIT VARIANCE SHADOW MAPS

1. Compute split frustums using the “practical split scheme”

2. For each split:

(a) Find the minimum bounding rectangle of the split frustum in
projected light space

(b) Derive a projection matrix by “zooming in” the standard light
space projection on the bounding rectangle

(c) Render a variance shadow map using this projection matrix
(d) Optionally blur the VSM, scaling the blur kernel size by the

zoom factors computed in step 2b
(e) Generate mipmaps for the VSM

3. When shading the scene, determine the relevant split using the
fragment’s z coordinate in camera space

4. Compute texture coordinates using the projection matrix for
the proper split

5. Perform a filtered texture lookup into the corresponding
shadow map to recover the moments M1 and M2

6. Compute the mean and variance using (1) and (2)

7. Evaluate (3) and multiply the light contribution by p(t)

TEXTURE COORDINATE DERIVATIVES

To compute the texture filter size, modern graphics hardware uses
finite differencing to approximate the screen-space texture coor-
dinate derivatives. These derivatives are computed in “quads” of
four pixels with each pixel having the same derivative as one of
its neighbours in each screen dimension.

For simplicity let us consider only a single screen-space dimen-
sion. A problem occurs when two pixels in the same quad com-
pute different split indices in step 3. In this case, two different
projection matrices will be used to compute two unrelated tex-
ture coordinates, and thus the derivatives obtained by differenc-
ing these values will be meaningless. Consequently the texture
filter size will be wrong and visible artifacts will appear along
split seams.

A simple way to avoid this problem is to choose a single split
per quad. To make this decision for a given fragment, we make
use of hardware derivative instructions. Unfortunately given two
adjacent fragments in the same quad with values x and x + 1,
computing δx = (x + 1) − x = 1 gives us no information from
which to deduce x, since we do not know which of the two frag-
ments is currently being shaded (both fragments will compute
the same δx). However if we compute δ(2x) = 2x+1 − 2x = 2x

we can recover x consistently for both fragments by computing
the base two logarithm.

Using this trick extended to two dimensions, we can make an ar-
bitrary choice about which split to use in a quad, and thus ensure
that hardware derivatives and texture filtering work properly.


