
Artistic Thresholding

Jie Xu Craig S. Kaplan∗

David R. Cheriton School of Computer Science
University of Waterloo

Figure 1: A photograph of St. Basil’s Cathedral in Moscow, rendered three different ways using artistic thresholding. Photograph used with
permission from CNET Networks, Inc., Copyright 2008. All rights reserved.

Abstract

We consider the problem of depicting continuous-tone images using
only black and white. Traditional solutions to this problem include
halftoning, which approximates tones, and line drawing, which ap-
proximates edges. We introduce “artistic thresholding” as a tech-
nique that attempts to depict forms in an image. We apply seg-
mentation to a source image and construct a planar subdivision that
captures segment connectivity. Our artistic thresholding algorithm
is a combinatorial optimization over this graph. The optimization
is controlled by parameters that can be tuned to achieve different
artistic styles.

CR Categories: I.3.5 [Computer graphics]: Computational
geometry and object modeling—Modeling packages J.5 [Arts
and Humanities]—Fine arts G.2.2 [Discrete mathematics]: Graph
theory—Graph algorithms

Keywords: Thresholding, Halftoning, Black and white, Segmen-
tation, Region adjacency graph

1 Introduction

There are many algorithms for creating black and white represen-
tations of continuous-tone images. The majority of these algo-
rithms are concerned with halftoning, the approximation of con-
tinuous tone using a distribution of black primitives on a white
background [Ulichney 1987]. Halftoning was—and continues to

∗e-mail: {jiexu,csk}@cgl.uwaterloo.ca

be—a necessary means of overcoming limitations in output tech-
nologies. For the most part, computer displays have moved be-
yond the need for extensive halftoning, but print technology is
still highly dependent on it. Halftoning has also found its way
into non-photorealistic rendering research; examples include algo-
rithms for approximating tone with stipples [Deussen et al. 2000;
Secord 2002], screens [Ostromoukhov and Hersch 1995], pen
strokes [Winkenbach and Salesin 1994], or the walls of a maze [Xu
and Kaplan 2007].

However, halftoning need not be the only way create a black and
white depiction of an image. There exists a great deal of traditional
art in black and white that makes no attempt at halftoning. An
immediate example is line drawing (see Figure 2(a)), which seeks
to convey all information about form and texture from a few sparse
visual cues embedded in contours. Aesthetically, we appreciate the
“efficiency” of this encoding of a scene, and enjoy the experience
of unpacking it.

Other traditional techniques use large regions of black and white in-
stead of lines. Examples are shown in Figure 2. Some ink paintings
use large black forms to carry all the salience of an image [Zheng
2000]. Papercutting, by its nature a binary medium, depicts an im-
age by cutting holes in black paper [Xu et al. 2007]. Closely re-
lated is stencilling, as in the graffiti work of the enigmatic British
artist Banksy. Many woodblock prints ignore tone (though masters
of the medium may include hatching or stippling in their blocks).
Contemporary examples include Frank Miller’s Sin City comic and
the computer animated film Renaissance. Both use pure black and
white to reinforce the stark setting of their stories. The story “Ex-
iles” in Neil Gaiman’s Sandman series also makes heavy use of
black and white, in a looser brush stroke style.

While the problem of producing line drawings from images has re-
ceived attention in NPR research [Kang et al. 2007], depiction using
large black and white regions remains underexplored. In this paper,
we consider the problem of converting continous tone images into
black and white representations inspired by examples like Sin City
and Sandman.

The simplest way to convert any colour image to black and white

(a)

(c)

(d)

(b)

Figure 2: Classic examples of black and white illustration
without halftoning: a simple line drawing (a), a papercutting
by Susan Throckmorton (b), Felix Vallotton’s woodcut La Raison
Probante (c), and a drawing by the authors (d), inspired by Chi-
nese ink painting [Zheng 2000].

(a) (b) (c)

Figure 3: Examples of a photograph (a) to which simple thresh-
olding (b) and adaptive thresholding (c) have been applied.

is undoubtedly thresholding. One chooses a cutoff value; a pixel
is converted to black or white depending on whether its luminance
is respectively below or above the treshold. Thresholding does not
produce convincing abstractions of images (Figure 3). It does not
respect features in the source image or recognize contrast between

colours with similar luminance. Adaptive thresholding, shown in
Figure 3(c), varies the cutoff value spatially depending on local
tone. It can do a better job of extracting features, but suffers from
many of the same problems.

One notable deficiency in thresholding is that an artist may choose
to colour dark objects white or bright objects black in order to make
them stand out from the background. These tone reversals are im-
portant for capturing all the details in a scene, and appear natural to
the viewer. However, they could never be accounted for by simple
thresholding. Our goal is to develop an algorithm that augments
thresholding with a competing force that tries to preserve visibility
of objects in the source image, and high-contrast edges in partic-
ular. We refer to any such algorithm as “artistic thresholding”, or
sometimes “wholetoning”.

In this paper we present an optimization-based artistic thresholding
algorithm. We construct a graph data structure based on segmenta-
tion of a source image (Section 2), and establish an energy function
that measures the quality of different black and white colourings of
the segments (Section 3). The algorithm searches for a black and
white assignment that minimizes the energy function (Section 4).
Our optimization is controlled via a collection of intuitive user-
selected weights that can produce distinct results. The user can
adjust weights in real time and observe the effect on the optimiza-
tion process (Section 6). Sample images created using our system
are presented in Figure 1.

1.1 Related work

Very little work in NPR is concerned with creating abstracted im-
agery via large regions of constant colour. DeCarlo and San-
tella [2002] used a hierarchical segmentation of an image to per-
mit abstraction with spatially-varying level of detail. In their work,
level of detail was guided by eye fixations, leading to a very natural
distribution of detail around salient image features and high abstrac-
tion elsewhere. Similar results were achieved recently by Orzan
et al. [2007]. They used edge information to guide the smoothing
of features into large regions of constant colour. Wen et al. [2006]
allowed the user to edit a segmentation interactively, and abstracted
segment shapes into attractive coloured forms. All of these tech-
niques focus on detail abstraction and preserve colours from the
source image.

Gooch et al. [2004] used a perceptually motivated technique to con-
vert photographs of human faces into black and white illustrations.
They achieve a pleasing level of abstraction, though some amount
of pixel-level detail survives the illustration process.

2 The region adjacency graph

The core of our artistic thresholding framework is a graph data
structure that encodes the geometric and topological properties of
small-scale features in an image. Our representation is similar to
the “region adjacency graph” used occasionally in image segmen-
tation and labeling algorithms [Horowitz and Pavlidis 1976], and
we adopt that name for our purposes.

Given a source image, we use segmentation to subdivide it into
regions. We use EDISON’s synergistic image segmenter [Chris-
toudias 2002], tuning it to oversegment. The small segments that
are produced (related to the notion of “superpixels” in computer
vision [Ren and Malik 2003]) support a wide range of abstracted
results, while eliminating the distracting details associated with op-
erations on individual pixels.

(a) (b)

Figure 4: A visualization of the region adjacency graph for a sim-
ple segmentation of the image in Figure 3(a). Every segment in (a)
has a corresponding vertex in (b) with the same colour and label.
Each vertex records the number of pixels in its segment. Each edge
records the length of the shared boundary between its neighbouring
segments.

Let us assume that the source image has dimensions W ×H (in pix-
els). Segmentation yields a set of N regions that we will denote
using the indices 1, . . . ,N. Each region is a (not necessarily con-
nected) subset Si of integer locations (x,y) in the image. We can
think of the segmentation as a planar graph with a vertex for each
region. Two vertices are connected by an edge when there are two
pixels, one from each of the corresponding regions, that are adja-
cent horizontally or vertically.

We augment this purely topological description of the segments
with information that will allow us to construct artistic thresholding
algorithms. With each region Si we associate ci, the average colour
of the pixels in Si, and the area Ai, the number of pixels in Si. For
every pair of distinct indices i and j, we let li, j denote the length of
the shared boundary between Si and S j. This length is measured in
terms of the number of adjacencies in the sense given above; if Si
and S j are not connected by a graph edge, li, j is zero (and hence an
explicit graph data structure is not required). Figure 4 illustrates a
simple segmentation, together with its region adjacency graph.

This simple representation of a segmentation enables a wide va-
riety of non-photorealistic rendering algorithms. Here we envi-
sion artistic thresholding as a technique that assigns a value bi ∈
{black,white} to every region. We freely abuse this definition,
thinking of bi sometimes as a colour defined in the same colour
space as ci, sometimes as a boolean value (where black is true and
white is false), and sometimes as real-valued a grey level (where
black is 0 and white is 1). Given an assignment {b1, . . . ,bN}, We
also define B = {i ∈ 1, . . .N|bi = black}, the current set of black
regions.

We would also like to allow a designer to divide the image more
coarsely into high-level features, and have those features inter-
act with the low-level segmentation. If explicit features are pro-
vided, we simply divide any segmentation regions that cross feature
boundaries. We will use these features in Section 3.3. In principle,
these two levels could be extended into a full segmentation hierar-
chy, such as the one constructed by DeCarlo and Santella [2002];
we have found two levels adequate for our purposes.

3 Evaluating the quality of an assignment

A natural first approach to artistic thresholding is an energy-based
optimization framework. There are 2N possible assignments to
the bi; we search over that space of assignments for one that mini-
mizes an objective function. In this section, we build the objective

(a) (b)

Figure 5: An example demonstrating the use of Ccol in isolation.
The photograph from Figure 3 is shown segmented in (a). The opti-
mized result is then shown in (b).

function, based on an intuitive sense of the quality of an assign-
ment. We believe that this quality depends on several competing
forces. The tradeoff in these forces is manifested by an objective
function that is a weighted sum of individual measurements. The
designer can adjust the weights to bias the search.

3.1 Colour matching

One term in the objective function must measure how well the bi-
nary assignment to each region approximates the original colour of
that region. We define Ccol, which evaluates the overall difference
between the binary assignment and the source image pixels:

Ccol =

(
∑

i
Aid(ci,bi)

)
/(WH) .

Here, d(c1,c2) is a function that computes the difference between
two colours, producing a result in the range [0,1]. We divide by
the total image area to normalize the cost to the range [0,1] (we
will seek to normalize all cost functions in a similar way). When
Ccol is used in isolation, the optimal assignment can be found easily
by setting bi to be the thresholded luminance of ci. For reference,
Figure 5 shows an image produced by minimizing Ccol. The result
is already more attractive than the pixel-based thresholding of Fig-
ure 3: pixels are collected into segments, resulting in a less noisy
image.

3.2 Area matching

In some cases a designer might wish to control the overall propor-
tion of black used in the final image. Given a user-supplied target
value Tarea ∈ [0,1], we define

Carea =

∣∣∣∣∣
(

∑
i∈B

Ai

)
/(WH)−Tarea

∣∣∣∣∣ .

Figures 6(a) and (d) demonstrate the effect of optimizing Carea.

3.3 Boundary contrast

The most interesting costs associated with an assignment measure
the impact of contrast (or lack of it) between adjacent segments on

(a) (b)

(c) (d)

Figure 6: Demonstrations of the area and boundary costs. The im-
age in (a) was optimized to be 80% black. Image (b) demonstrates
the use of Calike in isolation. In (c), we combine Calike and Copp
with comparable values to achieve a balanced composition. In (d)
we combine all three costs, aiming for 10% black.

the quality of the final assignment. Boundaries between segments
tend to contain the image’s edges as a subset. We would like to
preserve the visibility of those edges by ensuring that adjacent seg-
ments with contrasting colours are assigned opposite binary values.
Conversely, similarly-coloured segments should be assigned iden-
tical binary values.

We divide the set E of edges of the segment graph into two groups
Ealike and Eopp. An unordered pair (i, j) is in Ealike if bi = b j (i.e.,
the segments are both black or both white); otherwise the edge is in
Eopp. We can now define

Calike =

(
∑

(i, j)∈Ealike

li, jd(ci,c j)1/5

)
/

(
∑

(i, j)∈E
li, j

)
,and

Copp =

 ∑
(i, j)∈Eopp

li, j(1−d(ci,c j)1/5)

/

(
∑

(i, j)∈E
li, j

)
.

The cost Calike measures how effectively the assignment uses sim-
ilar binary values for similarly-coloured adjacent segments. On
its own, this cost is theoretically minimized by letting Ealike be
empty, corresponding to a 2-colouring of the region adjacency
graph. In practice, we obtain very busy asignments that approxi-
mate 2-colourings, as shown in Figure 6(b). Conversely, minimiz-
ing Copp comes from placing every edge in Ealike, which can be
achieved by assigning every segment the same binary value. When
these two costs are given comparable weights, they cooperate to
achieve a balanced use of contrast. Most interestingly, optimizing
these costs can lead to a segment being assigned a binary value that
contradicts its luminance, if that assignment improves the overall
depiction of shapes via edges.

(a) (b)

Figure 7: An example of minimizing the group homogeneity mea-
sure Cgroup in (b), based on the user-supplied features shown in (a).

Most of the time, we expect that adjacent segments will have similar
colours because of spatial coherence, which suppresses the effec-
tiveness of these measurements. Empirically, we found that taking
the colour differences to the power of 1/5 magnifies small differ-
ences and evens out the cost functions. Note also that constrasts are
multipled by boundary lengths, and normalized by the total length
of boundaries in the image.

When high-level features are provided by the designer, we mod-
ify Calike to further penalize feature edges that are not depicted via
segment contrast:

Calike =

(
∑

(i, j)∈Ealike

li, jd(ci,c j)1/5 pi, j

)
/

(
∑

(i, j)∈E
li, j pi, j

)
.

Here, pi, j = 1 when segments i and j belong to the same high-level
feature, and some real number greater than 1 when they do not.

3.4 Feature homogeneity

When the image is divided explicitly into high-level features, we
may sometimes wish to assign binary values as homogenously as
possible within each of those features. Assume that there are M
features. For a given assignment, let uk and vk denote the number
of black and white segments within feature k. Then we let

Cgroup =

[
M

∑
k=1

(
1− |uk − vk|

uk + vk

)]
/M .

This cost is minimized by assigning all segments within the same
high-level feature identical binary values. On its own, Cgroup can
produce very attractive images, but deceptively so: the quality
arises almost entirely from the salience of the user-provided fea-
tures (see Figure 7). This cost can be used profitably in conjunction
with the others, as a way to produce a “calmer” assignment.

3.5 Total cost

We must define a single energy function that can be minimized via
optimization. We adopt an approach that has been seen before in
NPR [Hertzmann 2001; Kim and Pellacini 2002], computing the
overall energy as a weighted sum of individual terms:

Ctotal =
wcolCcol +walikeCalike +woppCopp +wgroupCgroup

wcol +walike +wopp +wgroup
.

The weights are non-negative real numbers, not all zero. As with
the individual costs, we divide by the sum of the weights to nor-
malize the quality measurement. This normalization becomes es-
pecially important in the next section, where Ctotal is used as the
objective function in a simulated annealing optimization. If the
overall scale of the weights were allowed to drift, the resulting cost
function would behave differently with respect to the optimization’s
cooling schedule.

4 Optimization

The goal of artistic thresholding is to find an assignment
{b1, . . . ,bN} that minimizes the total cost Ctotal defined in the pre-
vious section. Except for very simple cases, it is too expensive to
search over all 2N assignments for the optimum. Instead, we use an
optimization framework based on simulated annealing [Press et al.
1992, Chapter 10]. Simulated annealing is a robust, general purpose
optimization algorithm. It is particularly useful when the geometry
of the configuration space is difficult to characterize.

We initialize the bi randomly to black or white, and keep track of the
current best assignment. The optimizer repeatedly constructs per-
turbations of this assignment and tests their costs. If a perturbed as-
signment has a lower cost, it is accepted unconditionally as the new
best answer; if the cost is higher, it is accepted with a small prob-
ability, temporarily degrading the solution in the hopes of avoiding
local minima in the configuration space. We use a cooling sched-
ule to decrease the acceptance probability at an exponential rate.
Optimization continues until a specified number of iterations have
passed with no changes to any of the bi, at which point we report the
best assignment found. A similar approach was used by Agrawala
and Stolte [2001] to render route maps.

The question remains of how to construct perturbations of the cur-
rent assignment. A natural approach is to flip a random bi and check
if that improves the overall assignment. However, in practice this
approach is too local. There may be situations where overall cost
can be decreased by changing the values of several nearby segments
in tandem, even though the cost goes up if any one of them is flipped
in isolation.

We mitigate this problem by operating on subgraphs instead of indi-
vidual segments. Given a vertex in the region adjacency graph, we
generate a connected subgraph contaning that vertex. The number
of vertices in the subgraph can be controlled by the user; we have
found that three to five vertices provide a good balance between
performance and quality. We construct new assignments for all pos-
sible combinations of binary values within this subgraph, and emit
the lowest-energy combination as the chosen perturbation. (We also
sometimes choose one of the other combinations, in order to inject
additional randomness into the search.)

Note that we do not need to recompute Ctotal from scratch every
time some bi changes. Most of the energy terms depend only on
the relationship between a segment and its immediate neighbours.
When one segment changes colour, we can compute the effect of
this change on those cost terms and add the difference to the cur-
rent cost. We further exploit this fact when testing all combinations
of binary assignments within a subgraph. We iterate over the com-
binations in an order given by a Gray Code [Weisstein 2008], so
that the combinations can be tested by flipping a single bi at a time.

(a) (b)

Figure 8: Demonstrations of the postprocessing operations dis-
cussed in Section 5. We smooth out isolated pockets of black and
white in (a) using graph-based morphological operators. In (b),
we superimpose edges between high-contrast segments that were
assigned the same binary value.

5 Postprocessing

Once the optimization is complete, we can simply render every
pixel in Si using colour bi. We have also experimented with sev-
eral postprocessing operations that can improve the overall quality
of our results.

The designer may optionally apply the standard OPEN and CLOSE
morphological operators, adapted here from the pixel grid to our re-
gion adjacency graph. These operators can help to eliminate small,
isolated pockets of contrasting colour, smoothing out noise and in-
creasing the level of abstraction in the thresholded image. For each
segment, we control which of its neighbours participate in the com-
putation of OPEN and CLOSE. A user-controllable area threshold
prevents small adjacent segments from having an influence. An
edge threshold excludes adjacent segments that are too different in
colour, helping to preserve image edges.

While we wish to draw a clear distinction between artistic thresh-
olding and previous work on line drawing, a few well-chosen lines
can enhance some of our results. We search over all pairs of ad-
jacent segments. When two segments are given the same binary
assignment but have a colour difference beyond a user-selected
threshold, we draw the boundary between them as an edge. These
edges can help to reinforce object boundaries in the source image
that were missed by the optimizer. In practice, we find that many
images are comprehensible without these edges.

Figure 8 demonstrates the application of the morphological opera-
tors and edges.

Finally, we vectorize the binary image to produce a high-quality
scalable result. We have obtained good results using the Potrace
library [Selinger 2003]. All results presented here have been vec-
torized in this way.

6 Implementation

We have constructed an interactive software implementation of
artistic thresholding. The interface is designed to support a contin-
uous, dynamic interaction between the designer and the optimiza-
tion process. The current best binary assignment is displayed dur-
ing optimization. The designer can modify the weights in the cost
function, immediately affecting the algorithm. In order to allow
weight changes to have a significant effect on the assignment, each
adjustment causes a small increase in annealing temperature. The

Figure 10: A wholetoned drawing based on a photograph of a
bridge in Wuzhen. Photograph by Carsten Ullrich.

designer can also fix binary values for individual segments when
desired; such values are held constant during optimization.

In our implementation, we set the initial annnealing temperature to
100. Every time the temperature changes, we iterate over the ver-
tices in the region adjacency graph. For each vertex, we construct
a random connected subgraph containing that vertex and optimize
it as described in Section 4. After visiting all vertices, we set the
temperature to 99% of its current value. When the current best
assignment has survived 200 temperature changes, we stop the op-
timization process.

7 Results and discussion

Figures 9 and 10 show some results produced using our artistic
thresholding algorithm. We have found our implementation to be
successful on a wide variety of source images. A typical result re-
quires only a few minutes of processing (disregarding the segmen-
tation step) and very little user interaction. In most cases, it is not
necessary to fix the binary values for any segments manually.

In Figure 11, we compare our technique to drawings that could
be produced with more traditional image processing methods. We
have found that a combination of bilateral filtering, blurring and
thresholding can produce attractive results, as in Figure 11(c).
However, this method misses some of the edges and details brought
out by artistic thresholding. Also, it is ultimately tied to traditional

(a) (b) (c)

Figure 11: A wholetoned drawing based on a photograph of the
CN Tower, together with related drawings produced via traditional
image processing approaches and vectorization. The original pho-
tograph is shown in (a). Blurring and adaptive thresholding pro-
duces the drawing in (b). In (c), we apply bilateral filtering, blur-
ring and thresholding, leading to a result with some similarities to
ours.

luminance-based thresholding, and could never produce more ab-
stract results like the rightmost image in Figure 1.

The algorithm produces interesting results across a wide range of
weights, and the responsive interface invites the designer to ma-
nipulate the weights interactively in a dialogue with the optimizer.
Our implementation is an engaging and effective tool for creative
exploration of this artistic style.

Colour only Colour, boundary
contrast, and
morphology

Colour, boundary
contrast, morphology,

and 10% black

Colour, 80% black, boundary, �xed
white foreground

Colour, boundary, 86% black

Colour and boundary

Colour, boundary,
group homogeneity

Colour, boundary,
�xed black foreground

Figure 9: Sample results produced using our artistic thresholding algorithm. We summarize the settings used to produce each result by
listing the non-zero weights and target area (if applicable).

Figure 12: The Kanizsa triangle, an example of illusory contours.

As mentioned in Section 2, we support manually specified high-
level features. They can be provided by tracing salient boundaries
in a drawing program. In some cases, we can make use of pre-
existing feature data. The images in Figure 9 all come from the
Berkeley Segmentation Dataset [Martin et al. 2001], and are ac-
companied by human feature identification data. In Figure 9, high-
level features were used for results that have fixed foregrounds or
that made use of Cgroup.

Despite the seemingly unpredictable nature of simulated anneal-
ing, we found that our implementation was quite stable: given a
source image and its region adjacency graph, re-running the opti-
mization with the same weights produced nearly identical results.
Differences were minor and did not affect the visual character of
the thresholded images. Quantitatively, the images differed from
each other over only a few percent of their pixels.

As with many algorithms in graphics and vision, we begin with a
finely segmented image and treat segments as atomic entities. Con-
ceivably our algorithm could be modified to operate directly on the
planar graph induced by image pixels. However, segments provide
a basic level of image abstraction and noise reduction that would
be difficult to achieve at the pixel level. A graph of individual pix-
els would probably produce less attractive results in the presence
of Calike and Copp. Looked at another way, we suspect that any
sufficiently robust artistic thresholding algorithm would necessar-
ily include a step that is equivalent to segmentation. We prefer to
trust in the high quality of published segmentation algorithms.

8 Future work

There is an interesting relationship to be explored between artis-
tic thresholding and line drawing. This paper takes a first step by
drawing missed edges explicitly after optimization is complete. We
would like to investigate how an understanding of edges can be in-
corporated directly into the optimization. We might extend our bi-
nary assignment to include a black or white value for each edge in
the region adjacency graph. We would then have to modify the cost
functions to evaluate assignment quality in the presence or absence
of these edges. At a minimum, we would want a term that simply
minimizes the total length of all edges drawn, in order to encourage
the binary segments to carry most of the salience in the result.

Even when adjacent segments with contrasting colours are given
the same binary value, it need not follow that their shared boundary
must be drawn. Our perceptual systems are wired to infer portions
of object contours that are obsured by lack of contrast. Perhaps
the most famous demonstration of this effect is the “Kanizsa trian-
gle”, shown in Figure 12. Missing contours are inferred so strongly
that we actually see an edge where none is present. These “illu-
sory” or “subjective” contours have been demonstrated in many
contexts [Parks 1984], and are usually attributed to a Gestaltist ex-

(a) (b)

(c) (d)

Figure 13: An example of how an “exclusive or” effect may be
achieved via carefully constructed user features. The tree in (a)
yields a single large segment, and therefore cannot contrast with
both the building and the sky in (b). In (c) we force a feature for
the building to cross through the tree. The boundary of this feature
splits the tree into two segments that can be given opposite colours.
Photograph by atemzeit, used with permission.

planation: a triangle occluding three circles is the simplest inter-
pretation of the image. This effect is used in practice, as in the
boundaries between the hosues in Figure 2(d). We would like to
explore the problem of how well image edges can be represented
even when partially invisible, taking inference into account. This
effect is enabled uniquely by artistic thresholding: line art draw-
ings do not exhibit illusory contours to the same degree.

Another effect we cannot easily achieve is the use of “exclusive-
or” to depict foreground objects on top of a background that varies
between black and white. We have encountered many examples
where thin foreground objects such as trees or table legs are drawn
in white on black segments and black on white segments (see Fig-
ure 2(d)). The object is then visible everywhere, and can be per-
ceived as a cohesive whole even though it varies between black and
white. Because we start by segmenting a flat image, it is difficult to
discover opportunities to use this effect. We can contrive to achieve
it by specifying high-level features that deliberately cross through
foreground objects. Those objects are then broken into multiple
segments, allowing the optimizer to make independent assignment
choices in the sub-segments. Figure 13 shows an example. An al-
ternative would be to work from a 3D scene or 2 1

2 D layers, in which
case we can decide on an XOR-like compositing rule when the lay-
ers are flattened. We used a similar approach in our earlier work on
papercutting [Xu et al. 2007].

Given the compelling appearance of the film Renaissance, it is nat-
ural to consider the application of artistic thresholding to video. If
segments could be tracked through a video sequence (perhaps us-
ing a keyframe approach [Agarwala et al. 2004]), we speculate that
the objective function could be modified to evaluate the cumulative
cost of an assignment across all frames. Alternatively, a technique
such as Video Tooning [Wang et al. 2004] could be used to find a
low-cost assignment directly on the space-time volume equivalent
of the region adjacency graph.

Finally, it would be interesting to augment the objective function
by taking into account further measures of salience in the source
image. Salience could be painted by hand or derived from eye-

tracking data [DeCarlo and Santella 2002]. It might also be com-
puted automatically; Collomosse and Hall [2005] used an auto-
mated salience algorithm to drive a genetic algorithm for painterly
rendering. Salience would probably be used to annotate edges in
the region adjacency graph with an importance value, which would
then affect boundary contrast costs.

Acknowledgments

We would like to thank the anonymous reviewers for their help-
ful comments. Thanks also to Bill Cowan, Doug DeCarlo, Aaron
Hertzmann, Neil Kaplan, and David Mould for assistance and pro-
ductive discussions. Thanks to Susan Throckmorton, Carsten Ull-
rich, and atemzeit for permission to use the images in Figure 2(b),
Figure 10, and Figure 13. This research was supported by NSERC.

References

AGARWALA, A., HERTZMANN, A., SALESIN, D. H., AND SEITZ,
S. M. 2004. Keyframe-based tracking for rotoscoping and an-
imation. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers,
ACM, New York, NY, USA, 584–591.

AGRAWALA, M., AND STOLTE, C. 2001. Rendering effective
route maps: improving usability through generalization. In SIG-
GRAPH ’01: Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, ACM, New York,
NY, USA, 241–249.

CHRISTOUDIAS, C. M. 2002. Synergism in low level vision. In
ICPR ’02: Proceedings of the 16 th International Conference
on Pattern Recognition (ICPR’02) Volume 4, IEEE Computer
Society, Washington, DC, USA, 40150. EDISON code available
at http://www.caip.rutgers.edu/riul/research/code/
EDISON/.

COLLOMOSSE, J. P., AND HALL, P. M. 2005. Genetic paint: a
search for salient paintings, vol. 3449 of Lecture Notes in Com-
puter Science (Proc. EvoMUSART). Springer-Verlag, 437–447.

DECARLO, D., AND SANTELLA, A. 2002. Stylization and ab-
straction of photographs. ACM Trans. Graph. 21, 3, 769–776.

DEUSSEN, O., HILLER, S., VAN OVERVELD, C., AND
STROTHOTTE, T. 2000. Floating points: A method for comput-
ing stipple drawings. Computer Graphics Forum 19, 3, 41–50.

GOOCH, B., REINHARD, E., AND GOOCH, A. 2004. Human fa-
cial illustrations: Creation and psychophysical evaluation. ACM
Trans. Graph. 23, 1, 27–44.

HERTZMANN, A. 2001. Paint by relaxation. In CGI ’01: Pro-
ceedings of the International Conference on Computer Graph-
ics, IEEE Computer Society, Washington, DC, USA, 47.

HOROWITZ, S. L., AND PAVLIDIS, T. 1976. Picture segmentation
by a tree traversal algorithm. J. ACM 23, 2, 368–388.

KANG, H., LEE, S., AND CHUI, C. K. 2007. Coherent line draw-
ing. In NPAR ’07: Proceedings of the 5th international sym-
posium on Non-photorealistic animation and rendering, ACM,
New York, NY, USA, 43–50.

KIM, J., AND PELLACINI, F. 2002. Jigsaw image mosaics. In
SIGGRAPH ’02: Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, ACM, New York,
NY, USA, 657–664.

MARTIN, D., FOWLKES, C., TAL, D., AND MALIK, J. 2001. A
database of human segmented natural images and its application
to evaluating segmentation algorithms and measuring ecological
statistics. In Proc. 8th Int’l Conf. Computer Vision, vol. 2, 416–
423.

ORZAN, A., BOUSSEAU, A., BARLA, P., AND THOLLOT, J. 2007.
Structure-preserving manipulation of photographs. In NPAR
’07: Proceedings of the 5th international symposium on Non-
photorealistic animation and rendering, ACM, New York, NY,
USA, 103–110.

OSTROMOUKHOV, V., AND HERSCH, R. D. 1995. Artistic screen-
ing. In SIGGRAPH ’95: Proceedings of the 22nd annual con-
ference on Computer graphics and interactive techniques, ACM,
New York, NY, USA, 219–228.

PARKS, T. E. 1984. Illusory figures: A (mostly) atheoretical re-
view. Psychological Bulletin 95, 2, 282–300.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND
FLANNERY, B. P. 1992. Numerical Recipes in C: The Art of
Scientific Computing, second ed. Cambridge University Press.
ISBN 0-521-43108-5. Held in Cambridge.

REN, X., AND MALIK, J. 2003. Learning a classification model for
segmentation. In Proc. 9th Int’l. Conf. Computer Vision, vol. 1,
10–17.

SECORD, A. 2002. Weighted voronoi stippling. In NPAR
’02: Proceedings of the 2nd international symposium on Non-
photorealistic animation and rendering, ACM, New York, NY,
USA, 37–43.

SELINGER, P. 2003. Potrace: a polygon-based tracing algo-
rithm. http://potrace.sourceforge.net/potrace.pdf,
September.

ULICHNEY, R. 1987. Digital Halftoning. The MIT Press.

WANG, J., XU, Y., SHUM, H.-Y., AND COHEN, M. F. 2004.
Video tooning. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Pa-
pers, ACM, New York, NY, USA, 574–583.

WEISSTEIN, E. W., 2008. Gray code. From MathWorld – A
Wolfram Web Resource. http://mathworld.wolfram.com/
GrayCode.html.

WEN, F., LUAN, Q., LIANG, L., XU, Y.-Q., AND SHUM, H.-Y.
2006. Color sketch generation. In NPAR ’06: Proceedings of
the 4th international symposium on Non-photorealistic anima-
tion and rendering, ACM, New York, NY, USA, 47–54.

WINKENBACH, G., AND SALESIN, D. H. 1994. Computer-
generated pen-and-ink illustration. In SIGGRAPH ’94: Proceed-
ings of the 21st annual conference on Computer graphics and
interactive techniques, ACM, New York, NY, USA, 91–100.

XU, J., AND KAPLAN, C. S. 2007. Image-guided maze construc-
tion. ACM Trans. Graph. 26, 3, 29.

XU, J., KAPLAN, C. S., AND MI, X. 2007. Computer-generated
papercutting. In PG ’07: Proceedings of the 15th Pacific Con-
ference on Computer Graphics and Applications (PG’07), IEEE
Computer Society, Washington, DC, USA, 343–350.

ZHENG, C. 2000. New Decorative Landscape Pattern Design,
first ed. Zhejiang People’s Art Publishing House. ISBN 7-5340-
1002-0.

