Calligraphic Packing

Jie Xu Craig S. Kaplan

Computer Graphics Lab
David R. Cheriton School of Computer Science
University of Waterloo

Gl'07 May 28, 2007

Outline

- Background of NPR Packing
 - Artistic Packing
 - Text Packing
 - Challenge of Calligraphic Packing
- 2 Approach
 - The procedure of our system
 - Container extraction
 - Container subdivision
 - Letter Warping
- Results and conclusion

Artistic Packing

- Representing a large image from smaller, recognizable elements.
- It has been explored by many artists.

Giuseppe Arcimboldo

Sandro Del-Prete

Image Packing

- Hausner, Simulating decorative mosaics, SIGGRAPH 2001.
- Dalal et al., A spectral approach to NPR packing, NPAR 2006.
- Kaplan and Salesin, Escherization, SIGGRAPH 2000.

NPR packing

- Kim and Pellacini, Jigsaw image mosaics, SIGGRAPH 2002.
- Gal et al., Non-realistic expressive modeling, SIGGRAPH 2006 sketch.

Transfer to Text

- Use text to tile a shape.
- Letters should be legible.
- Letters can stand a significant amount of deformation.

Transfer to Text

- Jigsaw image mosaics: only support minor deformation.
- Decorative mosaics and spectral packing: aim at packing a large number of small elements without deformation.
- Escherization: tile a plane with a lot of copies of one deformed shape strictly.
- Expressive modeling: compose 3D shapes with rigid motion.

Islamic Calligraphy

by Hassan Musa

Representational Calligraphy

Representational Calligraphy

Calligraphic Packing

It is a combination of calligraphy and packing. Given a region and a sequence of letters, construct a non-overlapping arrangement of deformed glyphs.

- The glyphs fill the region as much as possible.
- Glyphs are recognizable.
- The arrangement should follow the order of these letters.

aaaa AAAAA

Algorithm

- Convert an image into a container.
- Subdivide image into regions.
- Warp the letters into these regions.

Container Extraction

- Use graph-cut algorithm to remove background.
- Apply Gaussian blur to smooth the image.
- Threshold the image to produce a bi-level result.

Subdivision

- Set the starting arrangement of letters.
- Run a level-set algorithm to grow letters and cluster pixels.
- Use Lloyd's method to create an even arrangement.

Convert Regions into Paths

- Smooth the boundaries of regions by morphological operations.
- Trace the boundary to extract paths.

- Given the convex hull C_i of glyph and the subregion R_i .
- Do convex partition for the subregion.
- Place the same number of sample points around C_i and R_i .
- Select a correspondence.
- Create subdivision for the convex hull.
- Do warping in each convex piece.

- Given the convex hull C_i of glyph and the subregion R_i .
- Do convex partition for the subregion.
- Place the same number of sample points around C_i and R_i .
- Select a correspondence.
- Create subdivision for the convex hull.
- Do warping in each convex piece.

- Given the convex hull C_i of glyph and the subregion R_i .
- Do convex partition for the subregion.
- Place the same number of sample points around C_i and R_i .
- Select a correspondence.
- Create subdivision for the convex hull.
- Do warping in each convex piece.

- Given the convex hull C_i of glyph and the subregion R_i .
- Do convex partition for the subregion.
- Place the same number of sample points around C_i and R_i .
- Select a correspondence.
- Create subdivision for the convex hull
- Do warping in each convex piece.

- Given the convex hull C_i of glyph and the subregion R_i .
- Do convex partition for the subregion.
- Place the same number of sample points around C_i and R_i .
- Select a correspondence.
- Create subdivision for the convex hull.
- Do warping in each convex piece.

- Given the convex hull C_i of glyph and the subregion R_i .
- Do convex partition for the subregion.
- Place the same number of sample points around C_i and R_i .
- Select a correspondence.
- Create subdivision for the convex hull.
- Do warping in each convex piece.

- Given the convex hull C_i of glyph and the subregion R_i .
- Do convex partition for the subregion.
- Place the same number of sample points around C_i and R_i .
- Select a correspondence.
- Create subdivision for the convex hull.
- Do warping in each convex piece.

Geometric Shape Cost

- Use "shape context" to measure the similarity of two shapes.
- Compute a log-polar histogram for every reference point.
- Compute the geometric similarity \triangle_g as the sum of histogram distance between all pairs of points.

Orientation Cost

• Orientation is important to preserve legibility.

NZ

- Use a least-square method to compute the rigid motion from original glyph to warped one.
- From the rotation angle θ , we define the orientation cost: $\triangle_o = \theta/\pi$.

Area Cost

- Warped glyphs should fill the subregions as much as possible.
- Area cost is defined as: $\triangle_a = 1 A_w/A_r$.

Total Cost

Shape matching cost is $\triangle = \alpha \triangle_g + \beta \triangle_o + \gamma \triangle_a$.

Warping Multiple Typefaces

For each letter, we warp lowercase and uppercase glyphs from multiple typefaces.

Rendering Styles

- Perturb boundaries of letters with random offsets.
- Fill letters with streamlines.

Rendering Styles

- Perturb boundaries of letters with random offsets.
- Fill letters with streamlines.

freedom & slavery

successful

monalisa

monalisa

laugh & cry

Conclusion and Future Work

- Distribute letters automatically.
- Improve the letter deformation model.

Questions?

User-Specified Subdivision

• User-specified clustering.

• User-specified exclusion.

