COMPUTER GRAPHICS SEMINAR -Monday, October 28, 1996 Tom Lyche, Institutt for Informatikk, University of Oslo, will speak on ``The Sensitivity of a Spline Function to Perturbations of the Knots''. TIME: 3:30-4:30 ROOM: DC 1304 ABSTRACT In many applications of splines, like design, intersection problems, offsets, and datacompression, the knot vector is the result of long computations or interactive manipulations. It is then possible that knots may be placed very close together without actually being equal. To get a ``nicer'' knot vector, it may then be tempting to perturb some knots a little and in this way get a more evenly spaced knot vector, or introduce knots that are identical instead of almost identical. Another situation where one would like to change knots is in lofting, where a familly of spline curves need to be defined over a common knot vector. In this talk we give upper limits on how much a knot may be moved without the spline changing more than the tolerance. Examples are provided showing that the upper bounds are sharp. CS COLLOQUIUM SERIES DATE: Tuesday, October 29, 1996 TIME: 4:00 5:30 p.m. PLACE: DC 1302 Dr. Gerard Roth Senior Research Officer - Visual Information Group Institute for Information Technology Building Geometric Models using Three-dimensional Laser Range-finder Data At the Institute for Information Technology of the National Research Council of Canada we have been developing laser range- finders and applying them to a number of practical problems for over a decade. Such sensors directly obtain three-dimensional surface information by using a scanning laser beam. In this talk we will first describe the principles of operation of our sensors and show its ability to capture both geometry and colour at a high resolution. Then we will discuss how we take a number of range images and build a geometric model of an object or environment. Such models are useful in the application areas of virtual reality, robotics and manufacturing. We are able to take registered range images and make both parametric models, and mesh models. A parametric model consists of spline surfaces while a mesh model consists of many small triangular patches. The web page http://www.iitsg.nrc.ca/~roth shows some of the models that have been built, and http://www.autsrv.iitsg.nrc.ca/choice.html gives an overview of the entire project along, with some textured models. Most of the models are in vrml form and can be displayed with most vrml viewers.