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ABSTRACT: This paper presents a method to generate triangulations of the space
associated with an implicit manifold. It produces a regular structure that conforms
well to the shape of the manifold. The method has applications in geometric modeling,
computer animation and simulation.

1 INTRODUCTION

There are two different ways to describe a geometric object in Computer Graphics:
parametric or implicit. In the parametric form, the points constituting the object are
given directly by a local parameterization that defines a map from parameter space
to object space. This is the most popular way to describe an object in Computer
Graphics. In the implicit form, the points belonging to the object are given indirectly
through a classification function that defines the relation of spatial points with the
object.

In order to manipulate an implicit object more effectively is common to use a
spatial subdivision enumeration associated with the object. This auxiliary represen-
tation helps in the execution of operations that are difficult to perform on the implicit
representation alone.

This paper addresses the problem of constructing spatial subdivision enumera-
tions that are well adapted to the geometry of the associated implicit object. Our
goal is to obtain a regular decomposition of space reflecting the shape of the object.
We will introduce a method to automatically generate a triangulation of space from
an analytic description of the implicit object. The method is based on a spring-mass
model and generates a spatial enumeration of regular simplicial cells associated with
the manifold.



The organization of the paper is as follows: Section 2 briefly reviews implicitly
defined objects. Section 3 discusses space partition schemes. Section 4 presents
the spring-mass system construction. Section 5 describes the dynamic simulation
algorithm. Section 6 shows some examples. Section 7 discusses applications of the
method. Section 8 contains concluding remarks and current research topics.

2 IMPLICITLY DEFINED OBJECTS

In the smplicit form, the object is defined as the inverse image, F1(A), of a
subset A C R™, where F:U C R"” — R™, is a function defined in an open subset,
U of the euclidean n-space. When m = 1 and A = {0}, F' is a point-membership
classification function, that returns a value according to the relationship of a given
point p = (1, xs,...,2,) with the object O:

< 0, if P isin the interior of the object;
F(x1,x9,...,2,)4 =0, if P is on the boundary of the object;
> (0, if P is on the exterior of the object.

Intuitively the geometric objects are described implicitly in the following way: a
surface in 3-space would be defined taking n = 3, m = 1 and A = {c}; a solid in
3-space would be defined taking n = 3 and m = 1, and A = (—o0,¢|; a curve in
3-space is defined by taking A = {c¢}, n = 3 and m = 2 (note that the implicit
equation describes the curve as the intersection of two surfaces). In the same way
we can describe implicitly geometric objects in dimensions other than 3. In general
it is very difficult to study the geometric properties of these objects. By imposing
some additional conditions on the function F' they are differentiable manifolds. The
simplest condition is transversality: If A is a manifold (possibly with boundary) and F’
is transversal to A then the inverse image of A is a manifold (possibly with boundary).
When A is a unitary set the transversality condition reduces to the condition that the
differential of F' has maximal rank. For details about these results the reader should
consult (Hirsch, 1976).

We define an implicit surface as a codimension 1 implicit manifold, and an implicit
solid is a codimension 0 implicit manifold defined by F~!([a,b]), where b is a real
number, and a is either a real number or —oo. The boundary of the solid, in the
former case is the set F~'(b) U F~'(a), and in the latter case, the set F'~'(b). From
the transversality condition it follows that the boundary is an implicit surface. In
what follows, for simplicity, we will deal only with implicit surfaces and solids. We
will refer generically to them as implicit objects.

If O is an implicit object the vector field

sadFlp) = (50), -+, 5 (9)

is called the gradient vector field of O. This vector field is defined on the domain of
the function F', moreover it is orthogonal to the implicit surface and is orthogonal to
the boundary of an implicit solid.



If © = F1(0) is an implicit surface, then for a small real number ¢ > 0 the
equation F~!([—¢,¢]) defines an implicit solid containing O. It is called the closed
e-tubular neighborhood of O. Geometrically it is the region delimited by the two
“parallel” implicit surfaces F~'(—¢) e F~(g) (see Figure 1(a)).

If O = F7'((—00,b]) is an implicit solid, then for a small real number £ > 0
the equation F~*([b, b+ ¢]) defines an implicit solid. It is called the closed external
g-collar of O. Geometrically it is the region delimited by the boundary of the solid O
and by a “parallel” implicit surface F~!(b+¢) containing the solid (see Figure 1(b)).

We will refer to an e-tubular neighborhood or to an e-collar, generically as an
e-neighbourhood of the implicit manifold.

Figure 1: (a) Closed tubular neighborhood (b) Closed external collar.

3 TRIANGULATING THE SPACE

To capture the geometry of an implicit manifold the function F' has to be sampled.
There are several alternatives to do this, depending on the specific task one wants
to perform. For example, in a ray tracing program the intersection of a ray with
the surface is computed by searching for the common roots of the ray equation and
the implicit function. Another effective way to sample is to triangulate the space
and substitute the implicit function F' by its affine approximation in the simplicial
complex that defines the triangulation. The computational effort involved is small
and the results are very effective. The seminal work using PL methods to approximate
implicit manifolds in R” is (Allgower and Schmidt, 1985).

The Freudenthal triangulation is the simplest one to construct in R": we subdi-
vide the space R" in a uniform cubic grid and the triangulation is obtained by sub-
dividing each n-cube in n! simplices. A two dimensional example of this procedure
is illustrated in Figure 2. For the details about the construction of the Freudenthal
triangulation and the associated cell decomposition of implicit manifolds, the reader
should consult (Allgower, 1990).

The meshsize of a triangulation 7 is defined by 0 = sup,cydiam o, where o
represents a simplex of the triangulation. The meshsize depends on the space norm,



and its value for different norms differ by a constant. Using the euclidean norm the
meshsize of the Freudenthal triangulation in R" is \/n.

A triangulation is called regular if each simplex can be approximated by a regular
simplex. In 3-space a regular triangulation has no “bad tetrahedra” in the sense
described in (Dey et al, 1991).

Figure 2: Freudenthal triangulation of the plane.

For a given positive real number ¢ > 0, we say that a triangulation 7 is e-
subordinated to an implicit surface M = F~1(0), if the three following conditions are
satisfied (see Figure 3(a)):

(1) M is transversal to the triangulation;
(2) each n-simplex of 7 is regular.

(3) for each n-simplex o of T that intersects M, there exists a k-face, k < 0, f, of
o, and a point p € M No, at a distance < ¢ from the barycenter of o, such that
the tangent plane, T,M, of M at p is e-closed to the support plane of f,.

The above definition can be extended for implicit solids substituting the third
condition by the following one. Figure 3 illustrates condition (3) for the two
dimensional case.

(3") for each simplex o of T that intersects M, either o C M, or there exists a
n — 1-face f, of o, and a point p € M No, at a distance < ¢ from the barycenter
of o, such that the tangent plane, T,M, of M at p is e-closed to the support
plane of the face f,.

4 CONSTRUCTION OF SUBORDINATE TRIANGULATIONS

In this section we will describe a method to construct a triangulation subordinated
to a given implicit manifold M. The construction process involves a physically-
based approach, initially we define a system of spring-mass elements associated with



T —support plane to f;
9] b - simplex baricenter
TpM - tangent plane do M at p

Figure 3: e-subordinated triangulation.

a Freudenthal triangulation of the space. This system is submitted to forces derived
from the gradient field of the implicit manifold and its equilibrium position gives the
regular triangulation subordinated to the manifold.

The spring-mass lattice generation process consists of the following steps:

e A Freudenthal triangulation is created for a bounding box of the implicit man-
ifold;

e Each simplex of the triangulation that intersects the implicit manifold is iden-
tified;

e To each vertex of the simplex we associate a mass node, and to each 1-
dimensional face we associate a spring of the system.

The first step is explained in section 3. The identification of the relevant simplices
in the second step is made by testing the sign of the implicit function at the vertices
of each simplex. Assuming that the uniform sampling grid is sufficiently fine, then, if
the signs are the same for all vertices, the simplex must be totally inside or outside
of the object. If the signs are different, the simplex must intersect the boundary of
the object.

During this process two lists are created: a node list and a spring list. The
essential connectivity information is based on the location of grid points. In this way,

nodes are labeled according to their spatial locations and springs according to the
nodes they connect.

5 DYNAMIC SIMULATION

The dynamic simulation submits the spring-mass system to deformation forces



with the purpose of conforming it to the shape of the implicit manifold. The process
takes into account the internal forces produced by the springs as well as the external
deformation forces mentioned above. This discrete dynamics system is solved using
an explicit Euler time integration procedure.

The strategy adopted here is to enforce the spring-mass mesh to stay within a
closed e-neighborhood of the implicit manifold. Intuitively, the goal is to produce a
“thick shell” made of springs and point masses with thickness 2¢ around the implicit
surface or around the boundary of the implicit solid. In the case of an implicit solid
this shell extends to cover the all of the interior. We take ¢ proportional to the
meshsize of the initial triangulation.

The external forces are based on information derived from the geometry of the
implicit manifold. More specifically, two opposite attracting and repulsing force fields
are generated using the gradient vector field of the implicit manifold. One field,
defined inside the e-neighborhood, generates repelling forces that prevents points from
being too close to the surface. The other field, defined outside the e-neighborhood,
generates attraction forces that pulls points towards the surface. This is depicted in
Figure 4 for the two-dimensional case.
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Attraction field Repulsion field
Figure 4: Force fields.

In order to help the relaxation of the mesh structure into the desirable config-
uration, the initial rest length of the strings is made equal to the diameter of the
e-neighborhood (e.g. smaller than the grid spacing). This is equivalent to start the
simulation with a tensioned mesh that snaps into place moved by internal and external
forces.

With the above system the result stated below is true:

Theorem: The spring-mass system described above gets to an equilibrium po-
sition and at this final position it defines a triangulation T of the space with the
following properties:

(1) T is regular;

(2) T is subordinated to the implicit manifold M (in particular it is transversal to

M).



6 RESULTS

This section presents the results using the adaptive mesh algorithm. For clar-
ity, examples are restricted to two dimensions. The implicit object used in the 2D
examples is the circle defined by the equation z? +y? — 12 =0, r > 0.

Figure 5 reveals the evolution of the dynamic simulation. The initial mesh is
shown in Figure 5(a) Intermediate configurations can be seen in Figures 5(b) and
5(c). The final solution is shown in 6(d) Note how the geometry of the adaptive mesh
converges to the shape of the object. Note also that the final configuration is very
regular.

Figure 6 demonstrates the result of different grid sizes. It shows the final meshes
respectively for 2 x 2, 6 x 6, 12 x 12 and 60 x 60 grids. Figure 7 is a detail of the
mesh corresponding to a grid of size 80 x 80.

Figure 8 shows the spring-mass lattice of a disk (a solid object). In the dynamic
simulation, the force fields affect only the point masses belonging to the boundary
cells. The internal nodes are made passive, and the stiffness of the internal springs is
set to 1/10 of that of the boundary springs.

7 APPLICATIONS

This section discusses some applications of the method in computer graphics.
It can be used very effectively to solve several problems in geometric modeling and
animation.

The spatial subdivision enumeration associated with an implicit object produces
two complementary representations: a volumetric decomposition of the domain of the
implicit function and a combinatorial manifold approximating the boundary of the
object. Both are given as piecewise linear approximations and one is the dual of the
other. The former is an affine approximation of F' induced by the spatial subdivision
enumeration. The latter is a decomposition of the boundary of the object derived
from the spatial subdivision enumeration.

Figures 9 and 10 illustrate the application of the method to construct spatial
subdivision enumerations in three dimensions. They show the initial and the final
structures corresponding to two different implicit objects (respectively a sphere and
a torus). Note that the meshsize is increasingly finer.

The polygonization of an implicit surface M is computed from a subordinated
triangulation of the domain of M. The surface intersects each 3-simplex o in at most
4 distinct points, each one located on a different 1-dimensional face. Therefore, the
linear approximation to M inside o is formed by one or two triangles. The set of all
these triangles constitute the combinatorial manifold that approximates M.



Figures 11, 12 and 13 illustrate the polygonization of a cylinder defined by the
implicit equation 2% + y? = 1 Figure 11 shows a sequence corresponding to different
phases of the mesh deformation process for a cylinder. Figure 11.a depicts the initial
mesh created from a Freudenthal triangulation of the ambient space, Figure 11.b
reveals the final mesh in its equilibrium position. The polygonal approximation is
derived from the final mesh. It is apparent that the initial mesh was constrained to lie
in a tubular neighborhood of the implicit surface, conforming to the cylinder’s shape.
Figure 12 shows the final polygonal approximations for the cylinder. Figure 13 shows
a detail of the polygonization associated with the spatial subdivision enumeration
before and after the deformation process (Figures 13.a and 13.b respectively). Note
how the deformation of the mesh produces a very homogeneous polygon structure,
transforming long and thin elements in almost equilateral ones. This is because the
triangulation resulting from the dynamical simulation is subordinate to the surface,
as a consequence, the associated polygonization is quasi-regular.

Figure 14 illustrates the use of the spatial subdivision enumeration in physically-
based modeling and animation environment. A spring-mass mesh describing the
physical properties of the object is automatically generated from this structure. The
mesh is incorporated in the physically-based environment as a means of interacting
with the implicit object. The visualization of the state of the simulation can be
done either using a polygonal approximation of the surface as described previously,
or by sampling directly the deformed implicit object. Figure 14 shows a frame of
the dynamics simulation of a cylinder falling under a gravitational field. Figure
14.a depicts the spring-mass mesh used in the simulation. Figure 14.b shows the
corresponding polygonization of the cylinder.

8 CONCLUSIONS AND CURRENT RESEARCH

In conclusion, we have successfully developed a method that generates optimal
triangulation of the space associated with implicit manifolds. The resulting structure
is regular and conforms well to the shape of the objects. The mesh resolution can be
easily parameterized. The mesh construction process is totally automatic.

The method has multiple advantages. Besides the regular triangulation itself,
it constructs in a natural way a spring-mass system associated with the implicit
manifold. As we demonstrated above, this can be exploited in different directions:
dynamical simulation with implicit objects (Velho and Gomes, 1991) and cell de-
composition of implicit manifolds (Figueiredo et al,1991). We are also working on
a extension of this method to generate adaptive spatial enumerations subject to de-
termined characteristic of the implicit manifold, such as curvature or some physical

property.
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Figure 5: Evolution of the adaptive mesh



Figure 6: Grid sizes of: 2, 6, 12, 60
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Figure 7: Detail of the shell corresponding to a grid of size 80

Figure 8: Lattice for a solid object
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Figure 9: Sphere: Initial and Final Mesh (4 x 4 x 4)



Figure 10: Torus: Initial and Final Mesh (16 x 16 x 4)
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Figure 11: Grid deformation



12: Cylinder
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Figure 13: Detail of the polygonization



Figure 14: Physically-based animation of the cylinder



