
Interactive animation of structured deformable objects

Mathieu Desbrun Peter Schröder Alan Barr

Caltech

Abstract
In this paper, we propose a stable and efficient algorithm

for animating mass-spring systems. An integration scheme
derived from implicit integration allows us to obtain inter-
active realistic animation of any mass-spring network. We
alleviate the need to solve a linear system through the use
of a predictor-corrector approach: We first compute a rapid
approximation of the implicit integration, then we correct
this estimate in a post-step process to preserve momentum.
Combined with an inverse dynamics process to implement
collisions and other constraints, this method provides a sim-
ple, stable and tunable model for deformable objects suitable
for virtual reality. An implementation in a VR environment
demonstrates this approach.

1 Introduction

Interactive animation of deformable objects in virtual reality
systems has been a challenging problem for years. Although
many fast methods of animation have been proposed, few
techniques are currently able to dynamically animate even
simple deformable objects at interactive rates. Moreover,
animation in an immersive environment needs to be very
robust and stable, to be “bullet-proof” against any action of
the user. Thus, two apparently exclusive properties need to
be satisfied: we need both efficiency and stability, without
compromising the visual result. This paper proposes an
approach that finds a balance between these two goals,
enabling robust interactive animation as Fig. 1 illustrates.

1.1 Background and motivation
One of the simplest physically-based models over the last
decade, and thus, the most likely to achieve real-time perfor-
mances, is the mass-spring system [13, 12, 2]. A deformable
body is approximated by a set of masses linked by springs
in a fixed topology. This model can be seen as a discrete
approximation of a finite-element method for integrating the
Lagrange partial derivative equation of motion [21]. Easy to
implement, highly parallelizable, and involving few compu-
tations, it seems a perfect candidate for simple virtual real-
ity applications. Recently, improvements to this model have
been made, such as an inverse dynamics step to bound the
stretch of springs[18]. Adaptive time stepping to preserve
the system’s global energy has also been proposed [9].

Unfortunately, all of these approaches suffer from the
same problem: the time step squared must be inversely pro-

Figure 1: Picture captured during live sessions in a VR envi-
ronment: A silk scarf is moved around in a scene with obsta-
cles in real-time.

portional to the stiffness. Even if this is not an issue for
off-line computations, it prevents many use in real-time ap-
plications since very small time steps are required to ensure
stability. Various ways to overcome this problem have been
used. An extensive dissipative force, opposite to the velocity
of a mass point, provides a good way to maintain the stability
of the integration. However, this method introduces an im-
plausibly low terminal velocity, resulting in slow motions as
if the medium was made of oil. Gravity has often been mod-
ified (lowered) to avoid large forces in the system, but once
again, it introduces unbearable alteration in realism.

Other approaches have been taken to animate deformable
objects of fixed topology. Elasticity and visco-elasticity have
been modeled with success [20, 22, 21], but these meth-
ods suffer from the same time step handicap. Global meth-
ods, gaining efficiency by restraining the possible deforma-
tion [16, 23], are perfect for interactive manipulation, but are
unfortunately of limited realism.

To the authors’ knowledge, only two existing models
achieve real-time computations for deformable structured
objects. The first one is derived from the finite element the-
ory, and takes advantage of linear elasticity to allow real-time
deformation of any meshed objects [3]. This model is not
dynamic, but is rather a collection of static postures, which
greatly limits its applications. The other model is the recent
development of neuro-animators [8]: after a learning period,
a large neural network can emulate a simple physical system.
This recent approach has not been proven practical for large



coupled systems such as cloth.
The use of implicit integration, which can stably take large

time steps, has been proposed [1] in the context of cloth an-
imation. This method offers extremely low computational
times, which indicates the possibility of real-time animation
of simple objects. Inspired by this approach, we propose in
this paper a fast and stable way to animate any mass-spring
system.

1.2 Overview
We adopt the idea of the implicit integration, but we propose
a predictor-corrector approach to alleviate the computational
burden of solving a linear system at each time step. We intro-
duce an approximation of the implicit integration to predict
the next position, and then correct this approximation to en-
sure various physical invariants. The resulting algorithm is
similar to a regular explicit Euler integration scheme, with a
significant improvement: stability is ensured for arbitrarily
large time steps. Finally, we mix this method with a inverse
dynamics relaxation technique both to adjust the approxima-
tion made in the integration and to mimic nonlinear behavior.

This remainder of this paper is organized as follows: Sec-
tion 2 details the principle of implicit integration applied to a
1D mass-spring system, along with its advantages and disad-
vantages. We present our integration scheme in Section 3, by
explaining the approximation made to obtain stability and ef-
ficiency, and showing how to eliminate most of the errors cre-
ated. Section 4 briefly mentions an existing post-step modi-
fication we use to implement constraints, collisions, and to
enhance the realism. We finally give pseudo-code of our
method in Section 5, before showing some results in sec-
tion 6 and concluding in section 7.

2 Implicit integration: 1D case

While implicit time integration was used in early work on
deformable bodies [20], only two recent papers extensively
focus on the advantages of such a method [10, 1]. In order
to understand exactly what the implicit integration scheme
does, we start by detailing the simplest 1D case of mass-
spring system.

2.1 Notation
In this paper, we will use the following notation:

• x is the geometric state of the system, consisting of all
the positions xi of the mass points: x= (x1,x2, ...,xn)

T .

• v is the vector containing all of the velocities: v= ẋ.

• Fi denotes the internal forces (due to springs) acting on
a mass point i, whereas Fext

i will denote the external
forces such as gravity.

• Superscript indices indicate the time beginning with an
arbitrary time t0. For instance, xn

i = xi(t0+ndt).

• We will also use the backward difference operator:
∆n+1x= xn+1−xn.

Physical model in 1D
Suppose we have a 1D model in which each discrete mass
point i of mass m at position xi is linked to its two immediate
neighbors by a spring of stiffness k (Figure 2).

Figure 2: 1D case: masses linked by springs.

Integration scheme
To animate such a system, the following explicit Euler inte-
gration scheme can be used:

vn+1
i = vn

i +Fn
i

dt
m

xn+1
i = xn

i +vn+1
i dt.

Note that in the explicit Euler method, the forces at time
tn contribute to the velocities at time tn+1. Higher-order
schemes, like Runge-Kutta, are better in terms of numerical
accuracy for smooth solutions. However, since we often have
to handle collisions (which gives rise to discontinuities in the
motion during animation), these schemes are not appropriate.

Despite its ease of implementation, the explicit Euler
scheme requires an integration time step dt which must
be inversely proportional to the square root of the stiffness
(this criterion is more generally know as the Courant condi-
tion [24]). Otherwise, the system will blow up rapidly since
assuming the internal forces as constant over too large a time
step may often induce a wild change in position. In practice,
we effectively notice a stable behavior of the system only for
small time steps. This is the general problem of stiff sets of
equations: stability can be achieved only at very small time
scale with explicit schemes [17].

Another scheme, called implicit Euler integration, has
proven to be much better adapted to such a problem [10, 1].
The idea is to replace the forces at time t by the forces at time
t+dt:

vn+1
i = vn

i +Fn+1
i

dt
m

(1)

xn+1
i = xn

i +vn+1
i dt

This simple substitution enforces stability in a distinctive
way: now, the new positions are not blindly reached, but
they correspond to a state where the force field is coherent
with the displacement found. We still consider the forces to
be constant within the time step, but in theory, whatever the
value of the time step, the output state of the system will have
consistent forces that will not give rise to instabilities. To put
it in a different way, we can say that an explicit scheme takes
a step into the unknown only knowing the initial conditions,
while an implicit scheme tries to land on the next position
correctly.



To implement this scheme, we must compute Fn+1 with-
out yet knowing the positions of the masses at time t + dt.
Fortunately, we can write a first-order approximation (which
is actually exact for springs):

Fn+1 = Fn+
∂F
∂x

∆n+1x. (2)

As the internal forces of the system Fi are already propor-
tional to the gradient of an internal energy, we note that the
matrix H = ∂F

∂x is actually the negated hessian matrix of the
system. In our present 1D case, we have:

H = k




−1 1 0 0 . 0 0 0 0
1 −2 1 0 . 0 0 0 0
0 1 −2 1 . 0 0 0 0
. . . . . . . . .
0 0 0 0 . 1 −2 1 0
0 0 0 0 . 0 1 −2 1
0 0 0 0 . 0 0 1 −1




Now, substituting Equ. (2) into Equ. (1), and by writing:
∆n+1x= (vn+∆n+1v)dt, we find:

∆n+1v= (I− dt2

m
H)−1 (Fn+dt Hvn)

dt
m
. (3)

2.2 Difference between explicit and implicit
As H is constant in this 1D case, the implicit scheme does
not appear really different from the explicit one. In the next
sections, we take a closer look at the differences.

Addition of artificial viscosity
First, we can see that extra forces F̃n

= dt Hvn are added to
the set of internal forces Fn. For a given mass point i, we
remark that the additional force F̃i can be written as follows,
thanks to the structure of H:

F̃i = k dt ∑
j|(i, j)∈ Edges

(v j−vi).

The sum of the relative velocity with the neighbors has been
used several times in the past as artificial viscosity to create
a dissipative force in mass-spring or particle systems [14, 4],
or in Rayleigh damping forces. It intuitively means that the
motion of a mass point is influenced by the motion of its
neighbors: a particle will tend to follow the local displace-
ment. In the implicit integration, this articifial viscosity is
proportional to both the time step and the stiffness of the ma-
terial. As these two parameters are responsible for the in-
stabilities in an integration process, we “cushion” the force
field by using the right amount of viscosity, therefore adding
stability.

Filtering of the force field
Once an artificial viscosity has been added, we find the cor-
responding change of velocity through multiplication of the
resulting force by the inverse of a constant matrix. This

1

1/n

mass #

W

m

m
k dt  >> 12

k dt  << 12

Figure 3: A typical filter W, and two extreme cases: ex-
tremely rigid (Constant filter, equivalent to pure translation)
and extremely loose (Dirac filter, equivalent to the explicit
Euler integration).

matrix (I− dt2

m H) has many nice properties. First, as H
is a hessian matrix, it is symmetric. More important, H
has a zero eigenvalue for the eigenvector (1,1, ...,1)T as a
global translation of the mass-spring system does not create
a change in the internal forces. As a consequence, the ma-
trix W = (I− dt2

m H)−1 has an eigenvalue of 1 for the same
eigenvector. We can then write:

∀ j,
n

∑
i=1

Wi j = 1,

meaning that each line sums to 1. The multiplication of the
force field by W then corresponds to a filtering, as mentioned
by Kass [10]. The resulting forces are a discrete convolution
between the force field and this set of filters W . Due to the
simple structure of H in 1D, we note that the filters are Fi-
bonacci sequences: because of the tridiagonal structure of H,
there is a recurrence relation between every three successive
terms of the filters.

In the extreme case kdt2 << 1, we will get almost a Dirac
filter, meaning that for low stiffness or small time steps, the
implicit integration is basically equivalent to an explicit one.
In the other extreme case where either the stiffness or the
time step is significant, we will have an almost constant filter,
meaning that the mass points will all translate together as in
a rigid body motion. In between, filters will look like the one
depicted in Fig. 3. We then get a better understanding of the
efficiency of such an integration: the stiffer springs are, the
wider filters are. The resulting force on a mass point will take
into account all the forces around, smoothing the possible
large difference of net force between a mass point and its
immediate neighbor. Another way to express the same idea
is to say that this scheme propagates the information through
the whole material during a single time step, instead of just
affecting the immediate neighbors in the explicit integration,
and thus does not require a limit on the time step size.

2.3 Discussion
Implicit integration seems to perfectly suit the animation
community: it offers a way to create stable animations, with-



out having to tune unintuitive damping coefficients. More
importantly, it allows the time step to be set much higher
without problem, which reduces the computational time for
a given portion of animation. Therefore, as shown in the 1D
case, the explicit integration seems to be of no interest. Nev-
ertheless, we have to mention that we do gain stability by los-
ing accuracy. Indeed, using an implicit integration smoothes
the force field and adds viscosity, which introduces drift com-
pared to the real theoretical evolution of the system. More-
over, as soon as the system is in 2D or 3D, the hessian matrix
changes at each time step even for springs, which requires
the solution of a large linear system.

In an animation context, these two last flaws are not real
limitations. First, damping forces are frequently added to a
system for both realism and stability anyway, so the fact that
an implicit integration adds them directly without any need
for tuning is probably better for the user. And even if solving
a large linear system takes time, the advantages in the overall
computational time are really significant as shown in [1].

3 An extension to 2D and 3D

In this section, we propose a different way to integrate the
motion of any mass-spring systems. A simple approximation
allows us to advance the masses’ position with the ease of an
explicit Euler scheme, and the nice properties of an implicit
time integration scheme. We give pseudo-code for the overall
algorithm in Fig. 6.

3.1 Physical model
We now consider a general mass-spring system in 2D or 3D,
which is any set of mass points linked by springs. For the
sake of generality, we will consider that a mass point i is
linked to all the others with springs of rest length l0

i j and stiff-
ness ki j. This latter stiffness value is set to zero if the actual
model does not contain a spring between masses i and j.

3.2 Implicit integration
To use implicit integration, we must compute the hessian ma-
trix of the system. In contrast to the 1D case, we no longer
have a constant and simple matrix. For instance, for a spring
between mass i and mass j, we have:

∂F(i, j)
∂xi

=−ki j

[ ||xi−x j||− l0
i j

||xi−x j|| I3+ l0
i j
(xi−x j)

T (xi−x j)

||xi−x j||3
]

Thus we need to compute a 3n× 3n matrix with sums of
such expressions, and then solve the linear system at each
time step. This amounts to an application of the method used
in [1] to a mass-spring system. In this paper, we propose
an alternative approach which eliminates the need to solve a
linear system through an approximation of this matrix.

3.3 Splitting the problem in two
As computing the derivative of the spring forces seems very
expensive, we prefer splitting the force in two parts, a linear

and a nonlinear one:

F(i, j) = Flinear

(i, j) +Fnon-linear

(i, j)

Flinear

(i, j) =−ki j (xi−x j), Fnon-linear

(i, j) = ki j l0
i, j
(xi−x j)

||xi−x j||
In the next two sections, we show how to efficiently per-

form an approximate integration of these two parts by taking
advantage of the implicit integration detailed above.

3.4 Integrating the linear forces
The linear part represents a force that would act in the same
mass-spring system if all the rest lengths were zero, thus
shrinking the simulated object. But, as seen in section 2,
forces that are linear in position are easy to integrate: the
hessian matrix is constant. In our framework, we can directly
write the matrix H as a n×n matrix1 as follows:{

Hi j = ki j if i �= j
Hii =−∑ j �=i ki j

(4)

As in the 1D case, we can compute the filter matrix once and
use it to provide a stable integration regardless of what the
time step is, using Equ. (3). Integrating the linear forces is
thus very simple.

3.5 Integrating the nonlinear forces
The other part, non linear, is less intuitive, but has the nice
feature of always being of the same magnitude. It means that
Fnon-linear

(i, j) between t and t+dt will just rotate, without varying
in magnitude. In our integration predictor, we simply decide
to overlook the rotation, and suppose that this non-linear part
will stay constant (which amounts to considering the hessian
matrix as being null).

Two main reasons have motivated our choice for this ap-
proximation: first, as these forces do not change of magni-
tude, the prediction mainly introduces an error in angle. The
second reason is that we can simply balance this error in an-
gle later, with a straightforward post-step displacement as we
are going to explain in the next section.

3.6 Correction of momentum
To validate a time integration scheme, it is important to check
that linear and angular momenta are preserved. In our case,
it will enable us to correct the integration.

Preservation of linear momentum
One of the most important features in animation is the preser-
vation of linear momentum, as any error here will directly
affect the motion in an awkward way. Fortunately, the im-
plicit integration scheme preserves this quantity, in spite of
the artificial viscosity and the filtering. Indeed, we note that
the sum of all the artificial viscosity forces is zero:

n

∑
i=1

F̃i = dt
n

∑
i=1

(
n

∑
j=1

ki j (v j−vi)

)

1Actually, the real Hessian matrix should be 3n×3n, but as each entry is
a constant times the 3×3 identity matrix, we store only the constant as both
memory requirement and computational time are then optimized.



= dt ∑
i< j

ki j [(v j−vi)+ (vi−v j)] = 0

Similarly, the filtering of the force field doesn’t affect the
linear momentum since, knowing that ∑ j=1..n Wi j = 1, we can
write:

vn+1
i = vn

i +dt
∑n

j=1 F jWi j

m

= vn
i +dt

Fi

m
+

dt
m

n

∑
j=1
(F j−Fi)Wi j.

But then:

∑
i=1..n

(
∑

j=1..n
(F j−Fi)Wi j

)
= ∑

all (i, j)

(F j−Fi)Wi j = 0

as W is symmetric. Therefore, the motion of the center of
gravity is the same as in the explicit case.

Preservation of angular momentum
Another important physical quantity is the angular momen-
tum. As with linear momentum, any loss may be noticed im-
mediately. Regrettably, our integration scheme doesn’t pre-
serve this quantity. In practice, the stiffer the springs, the
bigger the loss, which is not surprising since we made a de-
liberate approximation that introduces angular errors.

Fortunately, we can balance this loss by a post-correction
on the position. Once the internal forces have been filtered
(i.e., multiplied by the constant matrix W ), we can compute
the resulting global torque δT :

δT =
n

∑
i=1
(xG−xi)∧Ffiltered

i

where xG is the center of gravity. Actually, as the sum of all
internal forces must be zero (action/reaction law), we use the
more direct expression:

δT =
n

∑
i=1

Ffiltered

i ∧xi.

This torque should be zero, so we need to modify the integra-
tion output to balance it. We can simply add the correction
force:

Fcorrec
i = (xG−xi)∧δT dt

on each mass point to compensate for the angular velocity
change. This expression is found by making the assumption
of a unit inertia matrix, and by linearly approximate the rota-
tion. Although more accurate would be easy to use, we found
these approximations to be satisfactory. Note that the sum of
all these correction forces is zero, so that this force field just
corrects the angular momentum without affecting the linear
momentum. In practice, we add Fcorrec

i dt2/m to the position of
every mass point. We do not have a zero-error scheme, as we
only compensate for the overall torque error, and may miss
local variations of torques. But tests show that the behavior
begins to be implausible only for high stiffness or very large
time steps, which will be addressed in section 4.

3.7 Discussion
Once the angular momentum has been re-adjusted, the ani-
mation obtained using the above scheme is satisfactory for
moderate stiffness. However, as local torques have been
overlooked, this simplified scheme performs badly for high
stiffness without a post-correction process: even if the ani-
mation remains stable, we obtain wrinkled meshes. We thus
have to add a post-correction, which is the subject discussed
in the next section.

4 Post-step modification: inverse dynamics

4.1 Motivation
Springs are certainly not a perfect physical model for real
clothes or real deformable objects. Roughly speaking,
their elongation is proportional to the force applied, which
may result in implausibly large deformation. The com-
mon force/deformation curve for a material is nonlinear as
sketched in Fig. 4. So we must modify the behavior of our
mass-spring system to make it more realistic. One way to

Force

dmax

Linear elasticity region

Non-linear elasticity region

Displacement

Figure 4: Force/Displacement curve simulated by our model

achieve this is to add a post-correction phase after a time
step. This post-correction can then be considered as a con-
straint enforcement: all the mass points are first advanced
normally, then we modify their positions to enforce a desired
constraint. Various approaches have proposed to iterate small
displacements until constraints are met [7, 15, 6].

4.2 Inverse dynamics process
In our context, we use an adequate and straightforward post-
step modification of mass points to eliminate large stretch
as defined in [18], where more details can be found. The
underlying idea is the following: Each time a spring is over-
stretched, bring the two extreme mass points together along
their axis while preserving the position of the center of grav-
ity of these two masses. If one of the two mass points is con-
strained at a given position, just move the other one to ensure
a reasonable elongation. By doing this for each spring and it-
erating, the resulting position both satisfies the external con-
straints (if the mass-spring system is grabbed for instance)
and simulates a nonlinear behavior as springs are shrunk if
there is an unwanted stretch. As this method is an inverse
dynamics process that does not involve forces, stability is
not an issue. Since it is similar to a Jacobi iteration, the
convergence properties may not be ensured; however, in our
case where accurate convergence is not needed, this does not
cause problems.



4.3 Implementation
In practice, we define a normalized threshold dmax which
represents the limit of proportionality in the desired
force/deformation curve for our springs. Then we iterate over
the springs exceeding this threshold and shrink them as ex-
plained in the previous paragraph. The criterion to end the
iteration can be chosen in various ways: either after a prede-
fined number of iterations (and it seems sufficient according
to our tests), or until convergence is reached (but we may
then lose real-time performance), or even until convergence
is reached or time is up (as we need to display new positions
at interactive rates). As this phase is only a “polishing” pro-
cess, stopping the iterations before final convergence doesn’t
create noticeable visual artifacts. This simple procedure pro-
vides the final touch to complete our model: we now have
a way to simply deal with constraints due for instance to
collision or user interaction. And as this inverse dynamics
process (or any other having the same properties) keeps the
mass-spring system from being over-stretched, it enhances
the realism of the overall animation.

Figure 5: Left: after one step of implicit integration, large
deformation appears near the grabbed mass point, and con-
straints are sometimes not met. Right: after the inverse dy-
namics process, we ensure both a more natural look of the
material and the enforcement of constraints.

5 Animation algorithm

We sum up the whole process in this following pseudo-code
in Fig. 6. An inspection of this algorithm, putting the very
first off-line computation of W aside, shows that the theoret-
ical complexity should be quadratic in the number of mass
points because W is not sparse as H is. However, the convo-
lution of the force field with W is actually performed quite ef-
ficiently compared to the evaluation of the forces themselves.
The observed overall complexity turns out to be linear for the
range tested (number of mass points< 1000), regardless of
stiffness or time step.

6 Results

We implemented this algorithm in 2D and 3D. We tested it
with cloth-like material first, then with volumetric objects.
In 3D, we used an immersive environment, namely the Re-
sponsive Workbench [11], to be able to virtually manipulate
the animated objects. We allow the user to grab the object

Precompute W = (In− dt2
m H)−1

At each time step dt
//Compute internal forces Fi
//due to springs and artificial viscosity.
xG = 0
For each mass point i

Fi = 0
xG+= xi
For each mass point j such as (i, j) linked by a spring

Fi+= ki j (||xi−x j ||− li j
0 )

xi−x j
||xi−x j ||

Fi+= ki j dt (v j−vi)
xG/= n
δT = 0
// Integrate the approximation (predictor, see section 3)
For each mass point i

F f iltered
i = ∑ j F jWi j

δT += F f iltered
i ∧xi

vn+1
i = vn

i +
[
F f iltered

i +Fext
i

]
dt
m

xnew
i = xi+vn+1

i dt
// Post correction of angular momentum (corrector, see section 3.6)
For each mass point i

Fcorrec
i = (xG−xi)∧δT dt

xnew
i += Fcorrec

i
dt2
m

// Now, use the inverse dynamics (see section 4)
nbIter = 0
do

Post-step inverse dynamics (as in [18] for instance)
nbIter = nbIter+1

until (error< ε) or (nbIter > nbIterMax) or (time is up!)
// Update real velocity and position
vn+1

i = (xn+1
i −xn

i )/dt
xi = xnew

i

Figure 6: Pseudo-code of our algorithm.

with a stylus (a mouse with 6DOF), and move it around the
scene containing a ground plane and diverse obstacles, with
friction on them all. It is important to note here that no air
friction or low gravity has been needed to achieve perfectly
stable results.

Quality of results
The visual results indicate that the approximated implicit in-
tegration mixed with the post-step inverse dynamics process
achieves simulation of deformable objects very well. Even
without force-feedback devices, one can really feel as if ma-
nipulating either a piece of cloth, or a soft object. Figures 7
and 8 show various snapshots obtained during such virtual
reality sessions, with different stiffnesses ranging from zero
(no internal forces, so only the inverse dynamics is applied,
resulting in simulation of a mesh made of rigid rods, like
chain mail) to 106. We also tried to add damping in the sys-
tem, as W is still constant in this case. Our tests of whether
such an additional parameter is worthy for an animator were
inconclusive. Needless to say that such a range of stiffness
simulated using an explicit scheme would have required time
steps of the order of 10−6 minimum to be stable. In our ex-
periments, we used dt = 0.02, corresponding to 50 frames/s.

Comparison with a real implicit scheme
We compared our computational times with [1]. It appears
that on average, our algorithm is 10 times faster than the con-
jugate gradient iterations for the pictures shown in this paper
(between 120 and 400 masses). It is important to mention



that when an iterative solver is used as in [1], the number of
iterations required to converge varies a lot depending on the
user interaction. Although the number of iterations of our
post-correction may slightly depend on how much the piece
of cloth has been moved in a time step, it seems that our tech-
nique is significantly more robust. Also, we maintain a fixed
time step throughout the animation, which is vital for real-
time applications. The speed up factor is thus hard to define
precisely, but it decreases rapidly with the number of mass
points used. It seems reasonable to consider our technique as
appropriate only for objects with less than 1000 DOF.

Implementation details
Our implementation includes friction on obstacles, and uses
a very simple plastic collision model, perfectly fine for cloth,
where mass points are pulled back on the surface of the ob-
stacles and have their normal velocity cancelled. However,
as the restitution coefficient is zero, this is not appropriate
for other 3D objects. We thus tested volumetric objects onyl
in surgery-like conditions, where an organ is partially fixed
and can only be pressed or pinched. In those conditions, any
structured deformable object can be simulated with great ef-
ficiency.

Figure 7: Different hanging postures of a cloth-like material
animated with our algorihtm

7 Conclusion & Discussion

We have presented a new algorithm to animate efficiently any
mass-spring system. As we can perform the time integration
for any time step size with a constant computational time, our
method is perfectly designed for real-time interaction in vir-
tual reality environments. The algorithm is an approximated

implicit integration scheme, but we preserve important phys-
ical quantities such as linear and angular momenta, vital for
realism. This technique can thus be classified as an implicit
predictor/corrector scheme. It handles constraints and colli-
sions in a very simple way, and uses nonlinear springs that
enhance the visual behavior of the motion.

We do not claim to have great generality. Although
this approach is very convenient for virtual reality where
bullet-proof and real-time methods are needed, this kind of
approximation cannot be used for more accurate simula-
tions. But we believe that a clear undestanding of implicit
integration may be the key to more general approaches.
Seeing the integration process as a smoothing process, to get
rid of high frequencies, is particularly important for anyone
willing to obtain robust animation with a fixed time step (it
is also closely related to Laplacian smoothing in modeling,
as explored in [19, 5]). The correction step introduced is
also interesting as it provides a useful sanity-check that will
ensure the preservation of vital invariants, as symplectic
methods do.

Color pictures from this paper can be found at:

http://www.cs.caltech.edu/∼mathieu

8 Acknowledgments

The authors would like to thank Mark Meyer for a part
of the implementation, Steven Schkolne for proof-reading,
Fehmi Cirak and François Faure for useful comments on
physics, and Frédéric Cazals and Gilles Debunne for ad-
vice. The research reported in this paper was supported
in part by DOE (W-7405-ENG-48), NSF (ACI-9721349,
EIA-9871235), and the NSF STC for Computer Graphics
and Visualization. Other support was provided by Design-
Works/USA and through a Packard Fellowship.

9 References
[1] David Baraff and Andrew Witkin. Large steps in cloth simulation.

In Michael Cohen, editor, SIGGRAPH 98 Conference Proceedings,
Annual Conference Series, pages 43–54. ACM SIGGRAPH, Addison
Wesley, July 1998.

[2] John E. Chadwick, David R. Haumann, and Richard E. Parent. Lay-
ered construction for deformable animated characters. Computer
Graphics, 23(3):243–252, July 1989.

[3] Stéphane Cotin, Hervé Delingette, and Nicolas Ayache. Real time
volumetric deformable models for surgery simulation. In Proceedings
of Visualization in Biomedical Computing, volume Lectures Notes in
Computer Science, volume 11, September 1996.

[4] Mathieu Desbrun and Marie-Paule Gascuel. Animating soft sub-
stances with implicit surfaces. In SIGGRAPH 95 Conference Proceed-
ings, Annual Conference Series, pages 287–290. ACM SIGGRAPH,
Addison Wesley, August 1995. Los Angeles, CA.

[5] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan Barr. Im-
plicit fairing of irregular meshes using diffusion and curvature flow.
In SIGGRAPH 99 Conference Proceedings, to appear in August 1999.
Los Angeles, CA.

[6] François Faure. Interactive solid animation using linearized displace-
ment constraints. 9th Eurographics Workshop on Computer Animation
and Simulation, September 1998.



(a) (b) (c)

(d) (e)
Figure 8: (a)–(c): Various rest positions for different stiffnesses obtained during a real-time session. (d)&(e): The scarf is
put on two obstacles, and slides in between. Time step used: 0.02.

[7] Jean-Dominique Gascuel and Marie-Paule Gascuel. Displacement
constraints for interactive modeling and animation of articulated struc-
tures. The Visual Computer, 10(4):191–204, March 1994. An early
version of this paper appeared in the Third Eurographics Workshop on
Animation and Simulation, Cambridge, UK, Sept 92.

[8] Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey Hinton. Neu-
roanimator: Fast neural network emulation and control of physics-
based models. In Michael Cohen, editor, SIGGRAPH 98 Confer-
ence Proceedings, Annual Conference Series, pages 9–20. ACM SIG-
GRAPH, Addison Wesley, July 1998.

[9] Ammar Joukhadar. Adaptive time step for fast converging dynamic
simulation system. In Proc. of the IEEE-RSJ Int. Conf. on Intelligent
Robots and Systems, volume 2, pages 418–424, November 1996.

[10] Michael Kass. An introduction to continuum dynamics for computer
graphics. In SIGGRAPH Course Notes. ACM SIGGRAPH, 1995.

[11] W. Krueger and B. Froehlich. The responsive workbench (virtual work
environment). IEEE Computer Graphics and Applications, 14(3):12–
15, May 94.

[12] A. Luciani, S. Jimenez, J-L. Florens, C. Cadoz, and O. Raoult. Com-
putational physics: a modeler simulator for animated physical objects.
In Eurographics’91, Vienna, Austria, September 1991.

[13] Gavin Miller. The motion dynamics of snakes and worms. Com-
puter Graphics, 22(4):169–177, August 1988. Proceedings of SIG-
GRAPH’88 (Atlanta, Georgia).

[14] Gavin Miller and Andrew Pearce. Globular dynamics: A connected
particle system for animating viscous fluids. Computers and Graph-
ics, 13(3):305–309, 89. This paper also appeared in SIGGRAPH’89
Course notes number 30.

[15] C. Van Overveld. An iterative approach to dynamic simulation of 3-D
rigid-body motions for real-time interactive computer animation. The
Visual Computer, 7:29–38, 1991.

[16] Alex Pentland and John Williams. Good vibrations: Modal dynamics
for graphics and animation. Computer Graphics, 23(3):215–222, July
1989. Proceedings of SIGGRAPH’89 (Boston, MA, July 1989).

[17] William Press, Saul Teukolsky, William Vetterling, and Brian Flan-
nery. Numerical Recipes in C, second edition. Cambridge University
Press, New York, USA, 1992.

[18] Xavier Provot. Deformation constraints in a mass-spring model to
describe rigid cloth behavior. In Graphics Interface, pages 147–154,
June 1995.

[19] Gabriel Taubin. A signal processing approach to fair surface design.
In Robert Cook, editor, SIGGRAPH 95 Conference Proceedings, An-
nual Conference Series, pages 351–358. ACM SIGGRAPH, Addison
Wesley, August 1995.

[20] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elas-
tically deformable models. Computer Graphics, 21(4):205–214, July
1987. Proceedings of SIGGRAPH’87 (Anaheim, California).

[21] Demetri Terzopoulos, John Platt, and Kurt Fleisher. Heating and melt-
ing deformable models (from goop to glop). In Graphics Interface’89,
pages 219–226, London, Ontario, June 1989.

[22] Demetri Terzopoulos and Andrew Witkin. Physically based model
with rigid and deformable components. IEEE Computer Graphics and
Applications, pages 41–51, December 1988.

[23] Andrew Witkin and William Welch. Fast animation and control for
non-rigid structures. Computer Graphics, 24(4):243–252, August
1990. Proceedings of SIGGRAPH’90 (Dallas, Texas, August 1990).

[24] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method.
McGraw-Hill, 1991.


