
A COMPUTER-AIDED SOUNDTRACK COMPOSITION SYSTEM
DESIGNED FOR HUMANS

Edwin Vane William Cowan

University of Waterloo
revane@cgl.uwaterloo.ca

University of Waterloo
wmcowan@cgl.uwaterloo.ca

ABSTRACT

Film music is a well-defined compositional domain hav-
ing specific features that are easily and usefully automated.
To begin exploring automated soundtrack composition we
have implemented a system that helps a composer to cre-
ate a musical score matched to a film or video, for mu-
sic composed in a minimalist style. The composer pro-
vides the musical themes and specifies a repetition pattern;
the computer provides a collection of scores matching the
composer’s work to the film timing; and the composer
chooses from among the proposed scores. We judge that
this composition procedure leaves all significant creativ-
ity in the hands of the composer where it belongs, facili-
tates recomposition required by changes during film edit-
ing, and maintains the overall process of film music com-
position, while doing automatically the timing and tempo
calculations that are distasteful to many composers.

1. INTRODUCTION

Most film and video is accompanied by a soundtrack, which
complements and amplifies the action and emotion of its
visual component. The soundtrack combines three com-
ponents: a speech track, a sound effects track and a mu-
sic track. The components of the soundtrack are synchro-
nized with each other and with the visual component to
create the final product. The theory and practice of auto-
mated tools to help a composer composing a music track
is the subject of this paper.

Soundtrack composition differs in many ways from the
composition of standalone music. Most importantly, stan-
dalone music is composed with enough structure and com-
plexity to occupy the full attention of a listener, while the
structure of soundtrack music is secondary to the struc-
ture of the visual component. In fact, overly structured
soundtrack music can subtract from the overall effect by
structural dissonance between the music and visual com-
ponents [11]. Actual soundtrack music is found to be
lightly structured, mainly using repetition with variation.

Second, standalone music plays without pause, or nearly
so, while soundtrack music is intermittent, present in some
scenes and not others. Each segment of soundtrack music
is called a cue: it mainly relates to the visual component
it accompanies, with secondary relationships to other cues
in the score.

Third, standalone music sets its own time, while sound-
track music must synchronize with the times of events
in the visual component. These events are measured in
clock time (minutes and seconds), whereas the score is
measured in music time (beats). Synchronization of the
music track with the video track depends on tempo which
expresses music time in terms of clock time.

Finally, the visual component changes as editing pro-
ceeds, often during soundtrack composition. Soundtrack
music must then be changed to match new clock times.
No such requirement exists for standalone music.

The presentation of these differences is necessary for
considering the challenges facing a composer; the chal-
lenges that motivate the design of our computer-aided sound-
track composition system. When considering how these
challenges can be assisted by computation we hold paramount
the principle that the creativity of the composer should
never be compromised: the computer should be a mind-
less assistant, who never makes creative decisions. Thus,
the extensive research in algorithmic composition (such as
[17, 6, 13, 8]) is not relevant to our research, which has a
goal similar to that of QSketcher [1]: to be a tool that en-
hances, without in any way displacing, human creativity.

That being said, computers, which excel at numerical
calculation, can take many of the temporal calculations
off the hands of the composer. And when there are many
score variations consistent with clock time constraints a
computer can offer them to the composer with a guarantee
that the collection is comprehensive. This capability is
particularly effective in assisting with the third and fourth
differences described above. To do so, it is necessary to
define a shorthand for music specification, described in
Section 3. The shorthand is, for ease of learning, very
close to common practice notation.

Sections 4 and 5 then describe how this shorthand pro-
vides a complete solution for making a score conform to
clock time constraints, and the subject of section 6 is a
system we implemented, EMuse, which makes these ca-
pabilities available to a composer.

2. BACKGROUND

Composers have developed a set of methods that work
well for soundtrack composition. Although these meth-
ods provide some inspiration for our research, the details

go far beyond the scope of this paper: Karlin and Wright
[11] provide an excellent description of music track com-
position practices during the last century.

2.1. Commercial Software

Existing commercial products provide substantial com-
puter support for music track composition. For example, a
score writing program like Sibelius [18] covers aspects of
composition shared by standalone music and music tracks,
with particular emphasis on music typesetting. In contrast,
The Auricle [3], is a specialized tool written and used by
film composers which serves as a time calculator and syn-
chronization tool.

Between these two extremes are software tools for cre-
ating full soundtracks. For example, Soundtrack [2], like
other similar commercial products, facilitates soundtrack
creation by providing a user with audio recording, edit-
ing, and mixing tools. These tools are often augmented to
support synchronizing audio with a video track.

2.2. Previous Work

While it is useful to observe the capabilities of commercial
software, the methods by which they are provided is hid-
den. Research in computer music, which includes many
aspects of composition, such as music representation, mu-
sic programming languages, and algorithmic composition,
is more accessible.

Research in algorithmic composition falls into four cat-
egories: rule-based [17], stochastic [6], grammar-based
[13], and genetic [8]. All of these algorithms focus on
computer-generated music with little intervention from hu-
mans. More relevant to our interests are music program-
ming languages, where the composer explicitly controls
every sound produced. With sound synthesis languages
like cSound [5], the composer can control music right
down to individual waveforms. At a higher level of ab-
straction, compositional languages like Pla [16] try to sup-
port all the different practices of working composers.

The Concept Based Sequencer [10] and mkmusic [15]
are examples of computer-generated soundtrack tools. In
both cases, timings from a video track and a high-level de-
scription of music drive an algorithmic composition pro-
cess resulting in computer-composed soundtracks. Evi-
dently, our research on computer tools to support human-
composed soundtracks fills a gap in research on computer
music.

3. MUSIC SPECIFICATION

The musical style supported by our system is minimal
music, which is described as a style using either a small
amount of musical material or a restricted set of musical
transformations [14]. Owing to the limited amount of ma-
terial, repetition tends to be very important. Additionally,
minimal music can be considered music of the moment as

!! !"

Music engraving by LilyPond 2.6.3 — www.lilypond.org

!" #$

Music engraving by LilyPond 2.6.3 — www.lilypond.org

!! !"#

Music engraving by LilyPond 2.6.3 — www.lilypond.org

a b c

Figure 1. Some simple motifs with their names.

! ! "! # !" # !" #
! ! !$! ! !%& 8

6 ! ! ! !

Music engraving by LilyPond 2.6.3 — www.lilypond.org

Figure 2. Music produced by a sequence of motifs from
figure 1 using the expression aabbbca.

listeners are not required to remember what has come be-
fore [14]. Thus, minimal music generally lacks large-scale
structure making it well suited for music tracks.

Thus, in designing a method for music specification,
we focus on minimal music. The music specification method
defined in this section, and used in the following ones,
describes music as the repetition of indivisible musical
atoms called motifs, which most often are short sequences
of notes and rests. The following points were the goals of
the design.

• It must be easy to use the specification to create mu-
sic.

• An algorithm must be able to interpret the specifi-
cation without making creative decisions.

• The composer should have control at a range of gran-
ularities. Some composers like to write individual
notes while others prefer to work in shorthand.

3.1. Expression Basics

The notes and rests that make up motifs are specified ex-
plicitly by the composer, subject to a single constraint:
they must contain at least one note or rest so as to have
a non-zero music-time duration. Motifs are repeated to
fill durations so they must themselves have non-zero du-
rations. Motifs are given unique names as shown in figure
1. Sequences of names then define sequences of motifs.
Figure 2 shows the music resulting from a combination of
motifs from figure 1.

As shown in figure 2, repetition of a motif is as sim-
ple as repeating its name in the expression. However,
this form of repetition gives an algorithm no flexibility to
choose or suggest a repetition count that makes the music
represented by the expression fit a particular clock-time
duration. To provide flexibility, we allow expressions to
include closure operators: *.

The closure operator is applied to the immediately pre-
ceding motif or sub-expression (a sequence of motif names
enclosed in parentheses). It indicates that the preceding
motif or sub-expression may be repeated any number of
times. Closure operators in expressions give algorithms

Expression Possible Expansion
ab*c abbbc
b(cd)*b bcdcdb
a* b* aaabbbb

Table 1. Examples of valid expressions and their possible
expansions.

the freedom to choose repetition counts that make the ex-
pression’s resulting music match a target clock-time du-
ration. Only later, when a target clock-time duration has
been specified, does the algorithm determine possible rep-
etition counts from which the composer may choose. Ta-
ble 1 shows several valid expressions and their possible
expansions.

Expressions with closure provide the composer with
varying levels of control: composers can specify an ex-
act number of repetitions using explicit repetition, as in
aaa, or a variable number using closure, as in a*. Ex-
plicit repetition gives composers fine-grained control of
the music while retaining the benefit of working with mo-
tifs. However, they give up using the ability of the com-
puter to calculate repetition counts that match clock-time
durations.

This method of music specification is based on regu-
lar expressions which have been studied as formal lan-
guages. Regular expressions are a basic concept of theo-
retical computer science. The expressions defined above
are a small subset of regular expressions. Using larger
subsets in a richer music specification system is an av-
enue for future work, limited by the problem of making
them easily comprehensible.

3.2. Timed Regular Expressions

Expressions still lack a crucial dimension: to make an ex-
pression last for a given clock-time duration it is neces-
sary to know the durations of its elements. Each motif has
a fixed music-time duration based on the notes and rests it
contains. However, when an expression includes a closure
operator the number of repetitions of part of the sequence
is known only to be an integer multiple of the duration
of the argument of the operator. The multiple is called a
repetition unknown. Solving for possible values of rep-
etition unknowns is an important feature of our system.

The combination of an expression and its duration, which
may include repetition unknowns, is called a timed regu-
lar expression. For notational purposes, a timed regular
expression is made of two parts: a repetition expression
which specifies how the motifs are combined and a dura-
tion expression which specifies how motif durations are
combined. Table 2 provides some examples of timed reg-
ular expressions.

4. CHOOSING REPETITION SOLUTIONS

With a timed regular expression in hand, values for rep-
etition unknowns can be sought. But, because repetition

Repetition Expression Duration Expression
abc ta + tb + tc
a∗ m1ta
(bc)∗ba∗ m1(tb + tc) + tb +m2ta

Table 2. Timed regular expressions split into their repeti-
tion and duration expressions. The duration of motif i is
specified by ti. Repetition unknowns are represented by
mj .

unknowns must be integers, there is very rarely a set of
repetition values, or repetition solution, for which the
expression’s clock-time duration exactly matches it’s tar-
get clock-time duration. Composers normally make the
match exact by varying tempo. Thus, it is appropriate for
our system to provide a collection of approximate repe-
tition solutions and, after one has been chosen, to allow
the composer to vary its tempo until it matches the target
duration exactly.

The target clock-time duration d is therefore provided
with error bounds, which indicate the range of acceptable
solution durations. That is, the composer provides ∆0 and
∆1 satisfying ∆0 ≤ d ≤ ∆1 to define the range. For ex-
ample, If the composer is more willing to slow the tempo
down than to speed it up, ∆0 is father from d than ∆1.

Given these values and the duration expression for a
timed regular expression, repetition solutions are found by
solving:

d−∆0 ≤ dexp ≤ d+ ∆1

dexp = k +
n∑
i

miti
(1)

In this equation, dexp is the general form of a duration
expression of which specific examples were given in table
2. k is the sum of the durations of all parts of the timed
regular expression not affected by any closure operator. ti
is the duration of a sub-expression and mi its repetition
unknown. When n = 0, no closure operators are present
and the existence or non-existence of a solution is the sole
responsibility of the composer: the computer cannot help,
so we assume n > 0. Then, there are usually many so-
lutions since equation 1 is an underdetermined system of
equations.

All durations in equation 1 are expressed in units of
music time. ti cannot be expressed in clock time because
the clock-time duration of an expression depends on tempo
which varies over time. Expressed in clock time, ti would
be a function of time making this equation much more dif-
ficult to solve. However, d, ∆0, and ∆1 can be expressed
in music time using time frame conversions described in
section 5. Solving equation 1 using music-time quantities
is made possible because the function mapping clock time
to music time is monotonic: tempo is a positive quantity.

m1

m2

m1t1+m2t2 = d+Δ1

m1t1+m2t2 = d−Δ0 m1

m2

(a) (b)

Figure 3. Example of 1D hyperplanes (i.e. lines) in a 2D
space. The bounding hyperplanes due to the inequalities
in equation 1 are shown. Integer-valued repetition solu-
tions are marked by circles. In Figure b, the solution space
has changed due to an increase in duration t2.

4.1. Solution Space Structure

Given many possible repetition solutions for a timed reg-
ular expression, how does the system present them to the
composer? A naı̈ve solution presents repetition solutions
in a linear list. A composer then scans the list to find suit-
able solutions. However, among the solutions there are
patterns and structure that a linear list obscures. If the
number of solutions is large, this structure must be shown
to the composer.

Thinking mathematically about the repetition solutions
provides some insight. A repetition solution is an ordered
n-tuple of integers satisfying equation 1. Repetition solu-
tions thus lie in an {n}-dimensional space. By defining
each vector in the {n}-dimensional standard basis to rep-
resent a repetition unknown, we discover that repetition
solutions for one timed regular expression form a subset
of an infinite lattice.

Equation 1 is an {n}-dimensional linear equation. That
is, it describes an {n−1}-dimensional hyperplane. The in-
equalities give the hyperplane “thickness”. That is, repe-
tition solutions lie between two parallel hyperplanes. Fig-
ure 3 provides an example in two dimensions which also
demonstrates how the orientation of the hyperplanes de-
pends on ti.

4.2. Presenting Solutions

Given the space of repetition solutions and its structure,
we must find a visualization method that is easy for the
composer to understand and use. Fortunately, the nature
of the solution space makes OSA PlaneSight [12] an at-
tractive solution.

OSA PlaneSight is a tool for choosing colours from the
OSA uniform colour space. OSA PlaneSight enables an
artist to easily choose a colour from a collection of colours
most of which are not visible at any given time. That
is, OSA colours and repetition solutions exist in a space
whose dimensionality is greater than that of the display
surface. OSA PlaneSight solves the problem by providing
simple navigation controls that control a 2D slicing plane.
Only the colours falling on the slicing plane are displayed

(a) (b) (c)

Figure 4. Illustrations of RepChooser navigation opera-
tions: a) in-plane motion, b) out-of-plane motion, and c)
reorientation.

at any time.
RepChooser presents repetition solutions to the com-

poser using the ideas of OSA PlaneSight. It uses 2D slic-
ing plane orientations that are parallel to any two stan-
dard basis vectors and perpendicular to all the rest. Thus,
there are

(
n
2

)
possible plane orientations. RepChooser

provides three navigation operations, described below and
illustrated in figure 4 to change the orientation and po-
sition of the slicing plane within the repetition solution
space.

1. In-plane motion: A composer selects a solution on
the current slice as a new focus of attention. The
currently selected solution serves as a center of ro-
tation for the third operation below.

2. Out-of-plane motion: The slicing plane maintains
its orientation but moves along one of the orthogo-
nal basis vectors. In n dimensions there are n − 2
orthogonal basis vectors.

3. Reorientation: A composer selects a new orienta-
tion for the slicing plane by choosing two basis vec-
tors. The slicing plane rotates to that new orienta-
tion around the currently selected solution. There-
fore the selected solution is present in both the old
and new orientations.

Each navigation operation is presented to the composer
in terms of the timed regular expression and its closure op-
erators. In-plane motion selects a visible solution. Out-of-
plane motion presents all solutions obtained by increasing
or decreasing the value of one repetition unknown. Re-
orientation is achieved by the composer choosing two clo-
sure operators whose repetition counts they wish to see
vary across the plane. Because the plane is defined by two
basis vectors, only two repetition counts vary across the
plane and patterns are easily visible.

In addition to these navigation tools, a visual represen-
tation of repetition solutions is required. Common prac-
tice notation is an option, but it is poor for providing in-
formation at a glance or for comparing large numbers of
solutions together. RepChooser uses the simpler method
of visualization shown in figure 5.

Each bar on the 2D slicing plane shows the music cor-
responding to a repetition solution. A bar is segmented
into different colours, where segment size indicates the
musical duration of a closure-repeated expression. This
representation combines both the base duration of a re-
peated expression and the value of its repetition unknown.

Figure 5. Screenshot of the RepChooser prototype. Solu-
tions are arrayed on a 2D plane. The floating red markers
indicate the target duration d. The green markers repre-
sent ∆0 and ∆1.

The total height of each bar is total musical duration of a
repetition solution; the height of each coloured segment is
the music-time duration of one repeated sub-expression.
Even with many bars presented on the slicing plane to-
gether, relationships between repetition solutions are read-
ily visible.

5. TEMPO

Tempo is important in all music. In soundtrack music
it is especially important because only a precisely cho-
sen tempo makes music-time durations match clock-time
ones. The clock-time duration of a solution chosen by a
composer is unlikely to exactly match the target duration
necessitating tempo adjustment. Here the system helps the
composer by calculating required tempi. In addition, the
system automatically performs other calculations based
on tempo, such as conversions between music time and
clock time.

To perform these calculations while allowing the com-
poser to control tempo, we need a tempo representation a
composer can easily understand. Several tempo represen-
tations exist in the literature [4, 7, 9] and we make use of
the representation more closely matching a musician’s un-
derstanding of tempo: rate of beats as a function of score
location. However, instead of being a function of score lo-
cation, we represent tempo as a function of clock time to
help the composer map music onto visual events. Tempo
is represented as a piecewise linear function, the corners
of which are set and edited by the composer. An illustra-
tive tempo function is shown in figure 6.

This tempo representation has a useful feature: the area
under the curve between any two points in clock time is
the music-time duration. Thus, clock-time durations are
converted into music time by integration. Integration con-
verts the target clock-time duration d into music time to
solve equation 1. Music-time durations are converted to
clock time also by integration. In this case, the music-
time duration is known and β – see figure 6 – must be
found. β being found, the clock-time duration is β − α.

The last calculation needed defines the tempo value yi

for a given tempo marker i. This calculation provides the

Clock Time

Te
m

po

α β

yi

ti ti+1

yi+1

dm =?

Clock Time

Te
m

po

α

yi

ti ti+1

yi+1

β=?

dm

Clock Time

Te
m

po

α βti ti+1

yi+1yi =?

dm

Figure 6. Illustrations of the three tempo calculations.
Each segment is represented by a linear function. The
tempo value at an adjustment point is denoted by yi. The
clock-time position of adjustment points is denoted with
ti. The shaded region dm represents the area under the
curve from α to β.

exact tempo to make a music-time duration, dm, fit a given
clock-time duration, β − α. It is useful for helping the
composer set a tempo that fits a repetition solution to a
target duration. All three calculations are illustrated in
figure 6.

6. THE SYSTEM

The previous sections introduced concepts that provide
a framework for computer-aided soundtrack composition.
To show that they adequately support soundtrack compo-
sition, we implemented a complete system based on the
following workflow. The composer starts by defining a
collection of motifs. Then points of interest are marked
on a clock-time timeline: cue starts, cue ends, and other
visual events to which the music should refer. Using these
points as a guideline, regions of clock time are defined
where each region has its music defined by a timed regu-
lar expression. Timed regular expressions are created us-
ing the motifs defined earlier.

The system then calculates a set of repetition solutions
which are presented to the composer via RepChooser. The
composer browses the space of repetition solutions and
chooses one, the clock-time duration of which is calcu-
lated using the current tempo. This duration is then shown
on a time-line, along with the target duration. The com-
poser then adjusts the tempo function to make the two
durations match. The tempo is changed at adjustment
points which the composer can add and remove at any
time. For any adjustment point the composer is working
with, the system calculates a tempo value required to make
the clock-time durations of the chosen solution and the re-
gion match. The result of this calculation is provided as a
hint to the composer.

Once a tempo function is defined the music may be
auditioned, likely suggesting changes and thus initiating
the edit/test cycle that is characteristic of most creative
work. The composer is free to edit any part of the music
at any time: the motifs, the choice of repetition solution,
or the tempo function.

Should clock-time durations later change, perhaps be-

Motif Name Beats

!!" 4
2

Music engraving by LilyPond 2.6.3 — www.lilypond.org

a 1

!!" 4
2

Music engraving by LilyPond 2.6.3 — www.lilypond.org

b 2

!!" 4
2

Music engraving by LilyPond 2.6.3 — www.lilypond.org

c 1

! !" 4
2

Music engraving by LilyPond 2.6.3 — www.lilypond.org

d 4

Table 3. Four motifs, with their names and music-time
duration given in beats assuming a tempo of 120 beats per
minute.

cause the visual component is re-edited, the composer ad-
justs the duration of affected regions to match new tim-
ings. The system then automatically recalculates repeti-
tion solutions while showing timing discrepancies on the
time-line. The composer is free to choose a new repetition
solution, adjust the tempo function, or even define a new
timed regular expression.

EMuse [19], the prototype composition system described
above, was implemented for Mac OSX using the Quick-
Time framework to synchronize digital video and MIDI-
generated music synthesized with Core Audio. EMuse
was tested by using it to compose soundtrack music for
several short films. We particularly examined the com-
poser’s interaction with RepChooser, interested to see if
it adequately supports a convergent process in which the
composer discovers a sequence of ever better repetition
solutions, culminating in a final selection.

7. AN EXAMPLE: GENERATING SOLUTIONS

To help clarify the mechanics of what the composition
system does for the user when calculating repetition solu-
tions, we now present a simple example. In this scenario,
a user wishes to fill ten seconds of time with music. The
user decides it is acceptable if the music is up to one sec-
ond shorter or longer than this target duration. During this
interval, the tempo is a constant 120 beats per minute. The
user has defined four named motifs, as shown in table 3,
with which to fill this interval. The timed regular expres-
sion describing how these motifs are to be combined is
a∗b∗c∗d.

Given the above input, the system can now calculate
repetition solutions. First, clock-time durations are con-
verted to music time. At 120 beats per minute, ten sec-
onds is twenty beats with a two beat error tolerance. Next,
the timed regular expression is interpreted as a duration
expression;

a∗b∗c∗d

becomes

18 ≤ 1na + 2nb + 1nc + 4 ≤ 22

na nb nc Total Beats
1 14 0 0 14
2 0 8 0 16
3 0 0 17 17
4 6 2 6 16
5 5 2 5 14
6 3 5 2 15

Table 4. A small selection of valid repetition solutions
chosen from the many possible solutions to equation 2.

0

5

10

15

20

a
b
c
d

2 4 5 6

Figure 7. 2D illustrations of repetition solutions 2, 4,
5, and 6 from table 4 similar to those presented by Rep-
Chooser. The beat duration of each solution is measured
using the meter on the left.

which simplifies to

14 ≤ 1na + 2nb + 1nc ≤ 18 (2)

The repetition unknowns for motifs a, b, and c are na,
nb, and nc respectively. There is no repetition unknown
for motif d as the user has explicitly given a count of one
in the timed regular expression. The coefficient of each
repetition unknown is the music-time duration for the cor-
responding motif. The linear system represented by equa-
tion 2 is now solved producing sets of values for repetition
unknowns, some of which are listed in table 4. Each set
of values represents a valid repetition solution fitting the
duration requirement of the user.

The function of RepChooser is to allow the user to ef-
ficiently navigate a large number of valid repetition solu-
tions in order to choose the most ideal solution. Figure 7
illustrates how a few of the solutions from table 4 might
appear in RepChooser. Each repetition solution in figure 7
shows total music-time duration of the solution, including
motifs that have fixed repetition counts. Figure 8 shows
the same repetition solutions typeset in common practice
notation.

8. CONCLUSIONS

The successful implementation of the EMuse system shows
that music specifications, repetition solutions and tempo
calculations together form a complete music track creation
and editing system. It has been used by one of the authors

2

! ! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ""# 4
2

Music engraving by LilyPond 2.6.3 — www.lilypond.org

4

! ! ! ! ! ! ! ! !! ! ! ! ! !! !! ! ! ! ! ! ! !! ! ! " "# 4
2

Music engraving by LilyPond 2.6.3 — www.lilypond.org

5

! ! ! ! ! ! ! ! !! ! ! ! !! ! ! ! ! ! ! ! ! ! ""# 4
2

Music engraving by LilyPond 2.6.3 — www.lilypond.org

6

! ! ! ! ! ! ! !! !! !! !! !! ! !! ! !"# 4
2

Music engraving by LilyPond 2.6.3 — www.lilypond.org

Figure 8. Repetition solutions 2, 4, 5, and 6 from table 4 typeset in common practice notation.

(EV) to produce several scores that accompany animated
videos created by students in the Fine Arts Department at
the University of Waterloo.These scores show the system
to be able to produce scores that amply complement the
videos, reinforcing mood that varies from cue to cue, even
within the limitations of minimalist musical style.

Three questions about the system come immediately to
mind. Can a professional composer of film music con-
struct a large scale score using such a system? Unfortu-
nately, such a question cannot be answered with the cur-
rent prototype implementation. Two very large obstacles
would have to be overcome to do so. First, the system
would require extension and polishing that goes many per-
son years beyond the effort available for our research. And
second, the composer would have to spend many months
experimenting with the system before being able to eval-
uate its full expressive potential. EV is a skilled performer
with little experience composing, but has an intimate knowl-
edge of the capabilities of the system, gained while im-
plementing it. He can use the system without extensive
training but lacks the training to stretch its limits.

In the hands of a professional composer, would the use
of EMuse shorten the time to compose? EMuse is de-
signed to help composers with particular mechanical as-
pects of soundtrack composition. With these mechanical
tasks in the hands of EMuse, one would expect the com-
poser to have more creative time. However, does EMuse
alter the creative process enough to affect the efficiency of
composition?

Clearly, incorporating the capabilities of EMuse into an
existing composition system is the best way to evaluate its
ability to assist professional composers. In such a context,
its capabilities may be used to support only part of the film
composition process: generating a time-accurate baseline
from which a more complex score can be composed.

The last question comes from the other extreme: can
a musical novice compose satisfying music for something
like a home video using the system? Composing short
note sequences is a first act of musical creativity and creat-
ing repetition patterns is straightforward with the system.
RepChooser is easy to use when the number of motifs
is small, and previous experience with OSA PlaneSight
showed that proficiency grows quickly with use. With
MIDI playback, the time from making a change to hearing

the result is short. Thus, as long as the user has the musical
taste to recognize a successful score getting good results
from the system with little training seems very likely.

Ordinary users easily composing personal music to ac-
company on-line video opens up a new dimension for web
services like YouTube. Democratizing music creation, as
various web tools have democratized writing and video,
may well be the most important impact of tools like EMuse.
To be sure, high musical culture is unlikely to be much en-
riched by such activity, but an analogy to electric guitars
in garages and bedrooms fifty years ago is not out of place.

8.1. Future Work

EMuse, as presented, is an extremely simple composition
tool. Its implementation intentionally neglects, for rea-
sons of scope, several key musical issues. EMuse is the
result of the presented study on how to programmatically
mitigate some of the basic challenges facing a soundtrack
composer. Future work will study ways to extend EMuse
in more musical directions such that the composer has cre-
ative control while benefitting from automation.

The first group of extensions stay within minimalist
music. The most obvious is enlargement of the music no-
tation, to include dynamics, articulation and polyphony.
In addition, musical transformations more complex than
repetition can be included. The challenge in such addi-
tions is to maintain the simplicity of the interface, to keep
the system open to users without musical training.

Another sort of extension would open the system to
other musical styles, which is more challenging. Min-
imalist music was chosen for this project because it is
easier to formalize than other styles of music. However,
many styles are used in practice, not all of them relying
on repetition as overtly as minimalism. The challenge is
to include the musical transformations of other styles in
EMuse’s music notation without falling into the trap of
requiring note by note composition. Meeting and over-
coming this difficulty holds the future of EMuse.

9. ACKNOWLEDGMENTS

We gratefully acknowledge the funding for this research
provided by the University of Waterloo and the Natural

Sciences and Engineering Research Council of Canada.

10. REFERENCES

[1] S. Abrams, R. Bellofatto, R. Fuhrer, D. Oppen-
heim, J. Wright, R. Boulanger, N. Leonard, D. Mash,
M. Rendish, and J. Smith. Qsketcher: an environ-
ment for composing music for film. In C&C ’02:
Proceedings of the 4th Conference on Creativity &
cognition, pages 157–164, New York, NY, USA,
2002. ACM Press.

[2] Apple Computer, Inc. Apple – Final Cut Stu-
dio – Soundtrack Pro [online, cited November 24,
2005]. Available from: http://www.apple.
com/finalcutstudio/soundtrackpro/.

[3] Auricle Control Systems. Welcome To The Auricle
[online]. 2005 [cited November 1, 2005]. Available
from: http://www.auricle.com.

[4] J. Bilmes. A model for musical rhythm. In Interna-
tional Computer Music Conference, pages 207–210,
San Francisco, 1993.

[5] R. Boulanger. The Csound Book: Perspectives in
Software Synthesis, Sound Design, Signal Process-
ing, and Programming. MIT Press, 2000.

[6] M. Farbood and B. Schoner. Analysis and syn-
thesis of palestrina-style counterpoint using Markov
chains. In International Computer Music Confer-
ence, 2001.

[7] H. Honing. From time to time: the representation
of timing and tempo. Computer Music Journal,
35(3):50–61, 2001.

[8] B. L. Jacob. Composing with genetic algorithms. In
International Computer Music Conference, 1995.

[9] D. Jaffe. Ensemble timing in computer music. Com-
puter Music Journal, 9(4):38–48, 1985.

[10] M. O. Jewell, M. S. Nixon, and A. Prügel-Bennet.
Cbs: a concept-based sequencer for soundtrack com-
position. In Proceedings of 3rd International Con-
ference on Web Delivering of Music, pages 105–108,
2003.

[11] F. Karlin and R. Wright. On the Track: A Guide to
Contemporary Film Scoring. Routledge, New York,
2nd edition, 2004.

[12] J. W. Lai. Implementation of colour design tools us-
ing the OSA uniform colour system. Master’s thesis,
University of Waterloo, 1991.

[13] J. McCormack. Grammar based music composi-
tion. In Complex Systems: From Local Interactions
to Global Phenomena. ISO Press, 1996.

[14] W. Mertens. American Minimal Music. Alexander
Broude Inc., New York, 1983.

[15] S. Mishra. The “mkmusic” system - automated
soundtrack generation for computer animations and
virtual environments. Master’s thesis, University of
Glasgow, Glasgow, Scotland, May 1999.

[16] W. Schottstaedt. Pla: A composer’s idea of a lan-
guage. In C. Roads, editor, The Music Machine. MIT
Press, 1989.

[17] W. Shottstaedt. Automatic counterpoint. In Current
directions in computer music research, pages 199–
214. MIT Press, Cambridge, MA, USA, 1989.

[18] The Sibelius Group. Sibelius [online]. 2005 [cited
November 1, 2005]. Available from: http://
www.sibelius.com/.

[19] R. E. Vane. Composer-centered computer-aided
sondtrack composition. Master’s thesis, University
of Waterloo, 2006. Available from: http://etd.
uwaterloo.ca/etd/revane2006.pdf.

